Multifractal analysis of Lévy fields

被引:0
|
作者
Arnaud Durand
Stéphane Jaffard
机构
[1] UMR 8628,Laboratoire de Mathématiques
[2] Université Paris-Sud,Laboratoire d’Analyse et de Mathématiques Appliquées
[3] Université Paris-Est Créteil Val de Marne UMR 8050,undefined
来源
关键词
Lévy random fields; Multifractal analysis; Hausdorff measures and dimension; Sets with large intersection; Diophantine approximation; Ubiquity; Primary: 60G60; 60G51; Secondary: 60G17; 60D05; 28A78; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
We study the pointwise regularity properties of the Lévy fields introduced by T. Mori; these fields are the most natural generalization of Lévy processes to the multivariate setting. We determine their spectrum of singularities, and we show that their Hölder singularity sets satisfy a large intersection property in the sense of K. Falconer.
引用
收藏
页码:45 / 96
页数:51
相关论文
共 50 条
  • [21] First Exit Times of Non-linear Dynamical Systems in ℝd Perturbed by Multifractal Lévy Noise
    Peter Imkeller
    Ilya Pavlyukevich
    Michael Stauch
    Journal of Statistical Physics, 2010, 141 : 94 - 119
  • [22] Stochastic analysis of cholera model with Lévy jumps
    Yang, Weiming
    Gan, Lu
    Liao, Shu
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [23] A Microlocal Analysis of the Lévy Generator with Conjugate Points
    Tully, Kevin
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (12)
  • [24] Lévy flights and Lévy walks under stochastic resetting
    Zbik, Bartosz
    Dybiec, Bartlomiej
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [25] A Nonstandard Lévy-Khintchine Formula and Lévy Processes
    Siu Ah NG School of Mathematical Sciences
    ActaMathematicaSinica(EnglishSeries), 2008, 24 (02) : 241 - 252
  • [26] A nonstandard Lévy-Khintchine formula and Lévy processes
    Siu Ah Ng
    Acta Mathematica Sinica, English Series, 2008, 24 : 241 - 252
  • [27] Extremes of subexponential Lévy-driven random fields in the Gumbel domain of attraction
    Mads Stehr
    Anders Rønn-Nielsen
    Extremes, 2022, 25 : 79 - 105
  • [28] The Spectrum of Lévy Constants for Quadratic Irrationalities and Class Numbers of Real Quadratic Fields
    E. P. Golubeva
    Journal of Mathematical Sciences, 2003, 118 (1) : 4740 - 4752
  • [29] Dynamical Fractional and Multifractal Fields
    Gabriel B. Apolinário
    Laurent Chevillard
    Jean-Christophe Mourrat
    Journal of Statistical Physics, 2022, 186
  • [30] Dynamical Fractional and Multifractal Fields
    Apolinario, Gabriel B.
    Chevillard, Laurent
    Mourrat, Jean-Christophe
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (01)