Multiscale convergence and reiterated homogenization of parabolic problems

被引:1
|
作者
Holmbom A. [1 ]
Svanstedt N. [2 ]
Wellander N. [3 ]
机构
[1] Department of Mathematics, Mid-Sweden University
[2] Department of Computational Mathematics, Chalmers University
[3] Swedish Defence Research Agency, FOI, Linköping SE-581 11
关键词
multiscale convergence; parabolic equation; reiterated homogenization;
D O I
10.1007/s10492-005-0009-z
中图分类号
学科分类号
摘要
Reiterated homogenization is studied for divergence structure parabolic problems of the form ∇ u ε/∇t-div (a(x,x/ε,x/ε 2,t,t/ε k)δu ε)=f. It is shown that under standard assumptions on the function a(x, y 1,y 2,t,τ) the sequence {u ε} of solutions converges weakly in L 2 (0,T; H 0 1 (Ω)) to the solution u of the homogenized problem ∇u/∇t- div(b(x,t)δu)=f. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:131 / 151
页数:20
相关论文
共 50 条
  • [41] Reiterated homogenization applied in hydrodynamic lubrication
    Almqvist, A.
    Essel, E. K.
    Fabricius, J.
    Wall, P.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2008, 222 (J7) : 827 - 841
  • [42] Reiterated homogenization of nonlinear monotone operators
    Lions, JL
    Lukkassen, D
    Persson, LE
    Wall, P
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2001, 22 (01) : 1 - 12
  • [43] Periodic reiterated homogenization for elliptic functions
    Meunier, N
    Van Schaftingen, J
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (12): : 1716 - 1743
  • [44] A NEURAL NETWORK APPROACH FOR HOMOGENIZATION OF MULTISCALE PROBLEMS
    Han, Jihun
    Lee, Yoonsang
    MULTISCALE MODELING & SIMULATION, 2023, 21 (02): : 716 - 734
  • [45] On multiscale homogenization problems in boundary layer theory
    Youcef Amirat
    Gregory A. Chechkin
    Maxim Romanov
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 475 - 502
  • [46] On multiscale homogenization problems in boundary layer theory
    Amirat, Youcef
    Chechkin, Gregory A.
    Romanov, Maxim
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (03): : 475 - 502
  • [47] A sparse spectral method for homogenization multiscale problems
    Daubechies, Ingrid
    Runborg, Olof
    Zou, Jing
    MULTISCALE MODELING & SIMULATION, 2007, 6 (03): : 711 - 740
  • [48] Numerical Homogenization Methods for Parabolic Monotone Problems
    Abdulle, Assyr
    BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 : 1 - 38
  • [49] REITERATED HOMOGENIZATION OF NONLINEAR MONOTONE OPERATORS
    J. L. LIONS D. LUKKASSEN L. E. PERSSON P. WALL (Dedicated to Professor Jaak Peetre on the Occasion of his 65th Birthday)
    Chinese Annals of Mathematics, 2001, (01) : 1 - 12
  • [50] Calculation of the effective thermal conductivity of multiscale ordered arrays based on reiterated homogenization theory and analytical formulae
    Nascimento, Eduardo S.
    Cruz, Manuel E.
    Bravo-Castillero, Julian
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2017, 119 : 205 - 216