Multiscale convergence and reiterated homogenization of parabolic problems

被引:1
|
作者
Holmbom A. [1 ]
Svanstedt N. [2 ]
Wellander N. [3 ]
机构
[1] Department of Mathematics, Mid-Sweden University
[2] Department of Computational Mathematics, Chalmers University
[3] Swedish Defence Research Agency, FOI, Linköping SE-581 11
关键词
multiscale convergence; parabolic equation; reiterated homogenization;
D O I
10.1007/s10492-005-0009-z
中图分类号
学科分类号
摘要
Reiterated homogenization is studied for divergence structure parabolic problems of the form ∇ u ε/∇t-div (a(x,x/ε,x/ε 2,t,t/ε k)δu ε)=f. It is shown that under standard assumptions on the function a(x, y 1,y 2,t,τ) the sequence {u ε} of solutions converges weakly in L 2 (0,T; H 0 1 (Ω)) to the solution u of the homogenized problem ∇u/∇t- div(b(x,t)δu)=f. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:131 / 151
页数:20
相关论文
共 50 条
  • [21] REITERATED HOMOGENIZATION OF HYPERBOLIC-PARABOLIC EQUATIONS IN DOMAINS WITH TINY HOLES
    Douanla, Hermann
    Tetsadjio, Erick
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [22] FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR NONLINEAR MONOTONE PARABOLIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Huber, Martin E.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1659 - 1697
  • [23] Rate of convergence in homogenization of parabolic PDEs
    Roman, LJ
    Zhang, XS
    Zheng, W
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2003, 6 (02) : 113 - 124
  • [24] Rate of Convergence in Homogenization of Parabolic PDEs
    Luis J. Roman
    Xinsheng Zhang
    Weian Zheng
    Mathematical Physics, Analysis and Geometry, 2003, 6 : 113 - 124
  • [25] Numerical homogenization method for parabolic advection–diffusion multiscale problems with large compressible flows
    A. Abdulle
    M. E. Huber
    Numerische Mathematik, 2017, 136 : 603 - 649
  • [26] HOMOGENIZATION PROBLEMS OF PARABOLIC MINIMA
    简怀玉
    Acta Mathematicae Applicatae Sinica(English Series), 1996, (03) : 318 - 327
  • [27] On Reiterated Homogenization Identities
    Pastukhova S.E.
    Tikhomirov R.N.
    Journal of Mathematical Sciences, 2015, 205 (2) : 297 - 303
  • [28] Numerical homogenization method for parabolic advection-diffusion multiscale problems with large compressible flows
    Abdulle, A.
    Huber, M. E.
    NUMERISCHE MATHEMATIK, 2017, 136 (03) : 603 - 649
  • [29] Reiterated homogenization of monotone operators
    Lions, JL
    Lukkassen, D
    Persson, LE
    Wall, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08): : 675 - 680
  • [30] Multiscale homogenization of nonlinear hyperbolic-parabolic equations
    Abdelhakim Dehamnia
    Hamid Haddadou
    Applications of Mathematics, 2022, 68 : 153 - 169