Chebyshev type inequalities by means of copulas

被引:0
|
作者
Sever S Dragomir
Eder Kikianty
机构
[1] Victoria University,College of Engineering and Science
[2] University of the Witwatersrand,DST
[3] University of Pretoria,NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics
关键词
Chebyshev inequality; synchronous function; copula; -norm;
D O I
暂无
中图分类号
学科分类号
摘要
A copula is a function which joins (or ‘couples’) a bivariate distribution function to its marginal (one-dimensional) distribution functions. In this paper, we obtain Chebyshev type inequalities by utilising copulas.
引用
收藏
相关论文
共 50 条
  • [31] Chebyshev Type Inequalities for Generalized Stochastic Fractional Integrals
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    Dahmani, Zoubir
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [32] CHEBYSHEV-TYPE INEQUALITIES AND LARGE DEVIATION PRINCIPLES
    Borovkov, A. A.
    Logachov, A., V
    Mogulskii, A. A.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2021, 66 (04) : 570 - 581
  • [33] Chebyshev type inequalities for interval-valued functions
    Zhao, Dafang
    An, Tianqing
    Ye, Guoju
    Liu, Wei
    FUZZY SETS AND SYSTEMS, 2020, 396 (396) : 82 - 101
  • [34] New general extensions of Chebyshev type inequalities for Sugeno integrals
    Agahi, Hamzeh
    Mesiar, Radko
    Yao Ouyang
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2009, 51 (01) : 135 - 140
  • [35] Improvement and extension of Chebyshev-type inequalities and of the Kolmogorov estimates
    Sokolov, NV
    DOKLADY MATHEMATICS, 2002, 65 (03) : 369 - 372
  • [36] Chebyshev type inequalities via generalized fractional conformable integrals
    Kottakkaran Sooppy Nisar
    Gauhar Rahman
    Khaled Mehrez
    Journal of Inequalities and Applications, 2019
  • [37] Chebyshev Type Integral Inequalities Involving the Fractional Hypergeometric Operators
    Baleanu, D.
    Purohit, S. D.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [38] Chebyshev type inequalities via generalized fractional conformable integrals
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Mehrez, Khaled
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [39] Hardy-type inequalities for means
    Páles, Z
    Persson, LE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (03) : 521 - 528
  • [40] New general extensions of Chebyshev type inequalities for Sugeno integrals
    Agahi, Hamzeh
    Mesiar, Radko
    Ouyang, Yao
    International Journal of Approximate Reasoning, 2009, 51 (01): : 135 - 140