Chebyshev type inequalities by means of copulas

被引:0
|
作者
Sever S Dragomir
Eder Kikianty
机构
[1] Victoria University,College of Engineering and Science
[2] University of the Witwatersrand,DST
[3] University of Pretoria,NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics
关键词
Chebyshev inequality; synchronous function; copula; -norm;
D O I
暂无
中图分类号
学科分类号
摘要
A copula is a function which joins (or ‘couples’) a bivariate distribution function to its marginal (one-dimensional) distribution functions. In this paper, we obtain Chebyshev type inequalities by utilising copulas.
引用
收藏
相关论文
共 50 条
  • [21] Chebyshev type inequalities for general fuzzy integrals
    Hu, Yue
    INFORMATION SCIENCES, 2014, 278 : 822 - 825
  • [22] Chebyshev type inequalities for Hilbert space operators
    Moslehian, Mohammad Sal
    Bakherad, Mojtaba
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) : 737 - 749
  • [23] BONFERRONI-TYPE INEQUALITIES - CHEBYSHEV-TYPE INEQUALITIES FOR THE DISTRIBUTIONS ON [O,N]
    SIBUYA, M
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (02) : 261 - 285
  • [24] Means of power type and their inequalities
    Lukkassen, D
    MATHEMATISCHE NACHRICHTEN, 1999, 205 : 131 - 147
  • [25] Sharp weighted multidimensional integral inequalities of Chebyshev type
    Barza, S
    Persson, LE
    Soria, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 236 (02) : 243 - 253
  • [26] CHEBYSHEV TYPE INEQUALITIES FOR SYNCHRONOUS VECTORS IN BANACH SPACES
    Otachel, Zdzislaw
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (02): : 421 - 437
  • [27] MARKOV INEQUALITIES FOR WEIGHT-FUNCTIONS OF CHEBYSHEV TYPE
    DIMITROV, DK
    JOURNAL OF APPROXIMATION THEORY, 1995, 83 (02) : 175 - 181
  • [28] Automatic detection of outliers and the number of clusters in k-means clustering via Chebyshev-type inequalities
    Peter Olukanmi
    Fulufhelo Nelwamondo
    Tshilidzi Marwala
    Bhekisipho Twala
    Neural Computing and Applications, 2022, 34 : 5939 - 5958
  • [29] Inequalities of the Chebyshev type based on pseudo-integrals
    Grbic, Tatjana
    Medic, Slavica
    Perovic, Aleksandar
    Paskota, Mira
    Buhmiler, Sandra
    FUZZY SETS AND SYSTEMS, 2016, 289 : 16 - 32
  • [30] Automatic detection of outliers and the number of clusters in k-means clustering via Chebyshev-type inequalities
    Olukanmi, Peter
    Nelwamondo, Fulufhelo
    Marwala, Tshilidzi
    Twala, Bhekisipho
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (08): : 5939 - 5958