Chebyshev type inequalities by means of copulas

被引:0
|
作者
Sever S Dragomir
Eder Kikianty
机构
[1] Victoria University,College of Engineering and Science
[2] University of the Witwatersrand,DST
[3] University of Pretoria,NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics
关键词
Chebyshev inequality; synchronous function; copula; -norm;
D O I
暂无
中图分类号
学科分类号
摘要
A copula is a function which joins (or ‘couples’) a bivariate distribution function to its marginal (one-dimensional) distribution functions. In this paper, we obtain Chebyshev type inequalities by utilising copulas.
引用
收藏
相关论文
共 50 条
  • [1] Chebyshev type inequalities by means of copulas
    Dragomir, Sever S.
    Kikianty, Eder
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [2] ON SOME INEQUALITIES OF CHEBYSHEV TYPE
    Shidlich, Andriy L.
    Chaichenko, Stanislav O.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1313 - 1320
  • [3] ON CHEBYSHEV-TYPE INEQUALITIES FOR PRIMES
    NAIR, M
    AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (02): : 126 - 129
  • [4] Generalized Integral Inequalities of Chebyshev Type
    Guzman, Paulo M.
    Korus, Peter
    Napoles Valdes, Juan E.
    FRACTAL AND FRACTIONAL, 2020, 4 (02) : 1 - 7
  • [5] Bell-type inequalities for quasi-copulas
    Janssens, S
    De Baets, B
    De Meyer, H
    FUZZY SETS AND SYSTEMS, 2004, 148 (02) : 263 - 278
  • [6] General Chebyshev type inequalities for Sugeno integrals
    Mesiar, Radko
    Ouyang, Yao
    FUZZY SETS AND SYSTEMS, 2009, 160 (01) : 58 - 64
  • [7] INEQUALITIES OF CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS
    MALLOWS, CL
    RICHTER, D
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (06): : 1922 - &
  • [8] 1-SIDED INEQUALITIES OF CHEBYSHEV TYPE
    PETROV, VV
    DOKLADY AKADEMII NAUK SSSR, 1964, 154 (06): : 1270 - &
  • [9] A generalization of the Chebyshev type inequalities for Sugeno integrals
    Hamzeh Agahi
    Adel Mohammadpour
    S. Mansour Vaezpour
    Soft Computing, 2012, 16 : 659 - 666
  • [10] Conformable fractional integral inequalities of Chebyshev type
    Set, Erhan
    Mumcu, Ilker
    Demirbas, Sevdenur
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2253 - 2259