Modified Log-Sobolev Inequality for a Compact Pure Jump Markov Process with Degenerate Jumps

被引:0
|
作者
Ioannis Papageorgiou
机构
[1] Universidade de Sao Paulo,Neuromat, Instituto de Matematica e Estatistica
来源
关键词
Brain neuron networks; Pure jump Markov processes; Modified log-Sobolev inequality; Concentration; Empirical approximations; 60K35; 26D10; 60G99;
D O I
暂无
中图分类号
学科分类号
摘要
We study the modified log-Sobolev inequality for a class of pure jump Markov processes that describe the interactions between brain neurons. As a result, we obtain concentration properties for empirical approximations of the process. In particular, we focus on a finite and compact process with degenerate jumps inspired by the model introduced by Galves and Löcherbach (J Stat Phys 151:896–921, 2013).
引用
收藏
页码:1293 / 1318
页数:25
相关论文
共 50 条
  • [31] Modified log-Sobolev inequalities for strongly log-concave distributions
    Cryan, Mary
    Guo, Heng
    Mousa, Giorgos
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 1358 - 1370
  • [32] Poincare-Type Inequalities for Compact Degenerate Pure Jump Markov Processes
    Hodara, Pierre
    Papageorgiou, Ioannis
    MATHEMATICS, 2019, 7 (06)
  • [33] Elementary bounds on Poincare and log-Sobolev constants for decomposable Markov chains
    Jerrum, M
    Son, JB
    Tetali, P
    Vigoda, E
    ANNALS OF APPLIED PROBABILITY, 2004, 14 (04): : 1741 - 1765
  • [34] Modified log-Sobolev inequalities and two-level concentration
    Sambale, Holger
    Sinulis, Arthur
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 855 - 885
  • [35] Mixed and Isoperimetric Estimates on the Log-Sobolev Constants of Graphs and Markov Chains
    Christian Houdré
    Combinatorica, 2001, 21 : 489 - 513
  • [36] Mixed and isoperimetric estimates on the log-Sobolev constants of graphs and Markov chains
    Houdré, C
    COMBINATORICA, 2001, 21 (04) : 489 - 513
  • [37] On the validity of the log-Sobolev inequality for symmetric Fleming-Viot operators
    Stannat, W
    ANNALS OF PROBABILITY, 2000, 28 (02): : 667 - 684
  • [38] Modified log-Sobolev inequalities, Beckner inequalities and moment estimates
    Adamczak, Radoslaw
    Polaczyk, Bartlomiej
    Strzelecki, Michal
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (07)
  • [39] MODIFIED LOG-SOBOLEV INEQUALITIES FOR STRONG-RAYLEIGH MEASURES
    Hermon, Jonathan
    Salez, Justin
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (02): : 1301 - 1314
  • [40] Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality
    Baudoin, Fabrice
    Bonnefont, Michel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) : 2646 - 2676