Modified Log-Sobolev Inequality for a Compact Pure Jump Markov Process with Degenerate Jumps

被引:0
|
作者
Ioannis Papageorgiou
机构
[1] Universidade de Sao Paulo,Neuromat, Instituto de Matematica e Estatistica
来源
Journal of Statistical Physics | 2020年 / 178卷
关键词
Brain neuron networks; Pure jump Markov processes; Modified log-Sobolev inequality; Concentration; Empirical approximations; 60K35; 26D10; 60G99;
D O I
暂无
中图分类号
学科分类号
摘要
We study the modified log-Sobolev inequality for a class of pure jump Markov processes that describe the interactions between brain neurons. As a result, we obtain concentration properties for empirical approximations of the process. In particular, we focus on a finite and compact process with degenerate jumps inspired by the model introduced by Galves and Löcherbach (J Stat Phys 151:896–921, 2013).
引用
收藏
页码:1293 / 1318
页数:25
相关论文
共 50 条
  • [21] The Deficit in the Gaussian Log-Sobolev Inequality and Inverse Santalo Inequalities
    Gozlan, Nathael
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (17) : 13396 - 13446
  • [22] Talagrand's inequality for interacting particle systems satisfying a log-Sobolev inequality
    Voellering, Florian
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01): : 173 - 195
  • [23] A log-Sobolev type inequality for free entropy of two projections
    Hiai, Fumio
    Ueda, Yoshimichi
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01): : 239 - 249
  • [24] Some Remarks on the Stability of the Log-Sobolev Inequality for the Gaussian Measure
    F. Feo
    E. Indrei
    M. R. Posteraro
    C. Roberto
    Potential Analysis, 2017, 47 : 37 - 52
  • [25] A reverse log-Sobolev inequality in the Segal-Bargmann space
    Sontz, SB
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1677 - 1695
  • [26] A Quantitative Log-Sobolev Inequality for a Two Parameter Family of Functions
    Indrei, Emanuel
    Marcon, Diego
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (20) : 5563 - 5580
  • [27] Log-Sobolev inequality on non-convex Riemannian manifolds
    Wang, Feng-Yu
    ADVANCES IN MATHEMATICS, 2009, 222 (05) : 1503 - 1520
  • [28] Some Remarks on the Stability of the Log-Sobolev Inequality for the Gaussian Measure
    Feo, F.
    Indrei, E.
    Posteraro, M. R.
    Roberto, C.
    POTENTIAL ANALYSIS, 2017, 47 (01) : 37 - 52
  • [29] MOMENT ESTIMATES IMPLIED BY MODIFIED LOG-SOBOLEV INEQUALITIES
    Adamczak, Radoslaw
    Bednorz, Witold
    Wolff, Pawel
    ESAIM-PROBABILITY AND STATISTICS, 2018, 21 : 467 - 494
  • [30] MODIFIED LOG-SOBOLEV INEQUALITIES FOR STRONGLY LOG-CONCAVE DISTRIBUTIONS
    Cryan, Mary
    Guo, Heng
    Mousa, Giorgos
    ANNALS OF PROBABILITY, 2021, 49 (01): : 506 - 525