A normalizing system of natural deduction for intuitionistic linear logic

被引:0
|
作者
Sara Negri
机构
[1] Department of Philosophy,
[2] University of Helsinki,undefined
[3] Helsinki,undefined
[4] Finland. e-mail: negri@helsinki.fi,undefined
来源
关键词
Linear Logic; Natural Deduction; Intuitionistic Linear Logic;
D O I
暂无
中图分类号
学科分类号
摘要
 The main result of this paper is a normalizing system of natural deduction for the full language of intuitionistic linear logic. No explicit weakening or contraction rules for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}-formulas are needed. By the systematic use of general elimination rules a correspondence between normal derivations and cut-free derivations in sequent calculus is obtained. Normalization and the subformula property for normal derivations follow through translation to sequent calculus and cut-elimination.
引用
收藏
页码:789 / 810
页数:21
相关论文
共 50 条
  • [41] Experiments in linear natural deduction
    Martini, S
    Masini, A
    THEORETICAL COMPUTER SCIENCE, 1997, 176 (1-2) : 159 - 173
  • [42] Natural deduction system for three-valued Heyting’s logic
    Petrukhin Y.I.
    Moscow University Mathematics Bulletin, 2017, 72 (3) : 133 - 136
  • [43] NONMODAL CLASSICAL LINEAR PREDICATE LOGIC IS A FRAGMENT OF INTUITIONISTIC LINEAR LOGIC
    DOSEN, K
    THEORETICAL COMPUTER SCIENCE, 1992, 102 (01) : 207 - 214
  • [44] The ILLTP Library for Intuitionistic Linear Logic
    Olarte, Carlos
    de Paiva, Valeria
    Pimentel, Elaine
    Reis, Giselle
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2019, (292): : 118 - 132
  • [45] FUNCTIONAL INTERPRETATIONS OF INTUITIONISTIC LINEAR LOGIC
    Ferreira, Gilda
    Oliva, Paulo
    LOGICAL METHODS IN COMPUTER SCIENCE, 2011, 7 (01)
  • [46] Lambda calculus and intuitionistic linear logic
    Rocca S.R.D.
    Roversi L.
    Studia Logica, 1997, 59 (3) : 417 - 448
  • [47] Intuitionistic linear logic and partial correctness
    Kozen, D
    Tiuryn, J
    16TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2001, : 259 - 268
  • [48] Functional Interpretations of Intuitionistic Linear Logic
    Ferreira, Gilda
    Oliva, Paulo
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2009, 5771 : 3 - 19
  • [49] A note on full intuitionistic linear logic
    Bierman, GM
    ANNALS OF PURE AND APPLIED LOGIC, 1996, 79 (03) : 281 - 287
  • [50] Cones as a model of intuitionistic linear logic
    Ehrhard, Thomas
    PROCEEDINGS OF THE 35TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2020), 2020, : 370 - 383