A normalizing system of natural deduction for intuitionistic linear logic

被引:0
|
作者
Sara Negri
机构
[1] Department of Philosophy,
[2] University of Helsinki,undefined
[3] Helsinki,undefined
[4] Finland. e-mail: negri@helsinki.fi,undefined
来源
关键词
Linear Logic; Natural Deduction; Intuitionistic Linear Logic;
D O I
暂无
中图分类号
学科分类号
摘要
 The main result of this paper is a normalizing system of natural deduction for the full language of intuitionistic linear logic. No explicit weakening or contraction rules for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}-formulas are needed. By the systematic use of general elimination rules a correspondence between normal derivations and cut-free derivations in sequent calculus is obtained. Normalization and the subformula property for normal derivations follow through translation to sequent calculus and cut-elimination.
引用
收藏
页码:789 / 810
页数:21
相关论文
共 50 条
  • [31] Natural Deduction for Quantum Logic
    Tokuo, K.
    LOGICA UNIVERSALIS, 2022, 16 (03) : 469 - 497
  • [32] Automated natural deduction for propositional linear-time temporal logic
    Bolotov, Alexander
    Grigoriev, Oleg
    Shangin, Vasilyi
    TIME 2007: 14TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS, 2007, : 47 - +
  • [33] Skolemisation for Intuitionistic Linear Logic
    Bruni, Alessandro
    Ritter, Eike
    Schurmann, Carsten
    AUTOMATED REASONING, IJCAR 2024, PT II, 2024, 14740 : 61 - 77
  • [34] NONCOMMUTATIVE INTUITIONISTIC LINEAR LOGIC
    ABRUSCI, VM
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1990, 36 (04): : 297 - 318
  • [35] LOGIC PROGRAMMING IN A FRAGMENT OF INTUITIONISTIC LINEAR LOGIC
    HODAS, JS
    MILLER, D
    INFORMATION AND COMPUTATION, 1994, 110 (02) : 327 - 365
  • [36] Least and greatest fixed points in intuitionistic natural deduction
    Uustalu, T
    Vene, V
    THEORETICAL COMPUTER SCIENCE, 2002, 272 (1-2) : 315 - 339
  • [37] From Axiomatic Logic to Natural Deduction
    Jan von Plato
    Studia Logica, 2014, 102 : 1167 - 1184
  • [38] From Axiomatic Logic to Natural Deduction
    von Plato, Jan
    STUDIA LOGICA, 2014, 102 (06) : 1167 - 1184
  • [39] Natural Deduction for Intuitionistic Euler-Venn Diagrams
    Linker, Sven
    DIAGRAMMATIC REPRESENTATION AND INFERENCE, DIAGRAMS 2021, 2021, 12909 : 529 - 533
  • [40] A Natural Deduction Approach to Dynamic Logic
    Honsell, F
    Miculan, M
    TYPES FOR PROOFS AND PROGRAMS, 1996, 1158 : 165 - 182