A normalizing system of natural deduction for intuitionistic linear logic

被引:0
|
作者
Sara Negri
机构
[1] Department of Philosophy,
[2] University of Helsinki,undefined
[3] Helsinki,undefined
[4] Finland. e-mail: negri@helsinki.fi,undefined
来源
关键词
Linear Logic; Natural Deduction; Intuitionistic Linear Logic;
D O I
暂无
中图分类号
学科分类号
摘要
 The main result of this paper is a normalizing system of natural deduction for the full language of intuitionistic linear logic. No explicit weakening or contraction rules for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}-formulas are needed. By the systematic use of general elimination rules a correspondence between normal derivations and cut-free derivations in sequent calculus is obtained. Normalization and the subformula property for normal derivations follow through translation to sequent calculus and cut-elimination.
引用
收藏
页码:789 / 810
页数:21
相关论文
共 50 条