The aim of this paper is to study finite convex polyhedra in three dimensional hyperbolic space H3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {H}}^3$$\end{document}. We characterize the quasiconformal deformation space of each finite convex polyhedron. As a corollary, we obtain some results on finite circle patterns in the Riemann sphere with dihedral angle0≤Θ<π\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0\le \Theta < \pi $$\end{document}. That is, for any circle pattern on C^\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{\mathbb {C}}$$\end{document}, its quasiconformal deformation space can be naturally identified with the product of the Teichmüller spaces of its interstices.
机构:
Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R ChinaChongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
Huang, Xiaojun
Liu, Jinsong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, AMSS, Inst Math, Beijing 100190, Peoples R China
Chinese Acad Sci, HUA Loo Keng Key Lab Math, Beijing 100190, Peoples R ChinaChongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
机构:
Waseda Univ, Senior High Sch, Nerima Ku, 3-31-1 Kamishakujii, Tokyo 1770044, JapanWaseda Univ, Senior High Sch, Nerima Ku, 3-31-1 Kamishakujii, Tokyo 1770044, Japan
Nonaka, Jun
Kellerhals, Ruth
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fribourg, Dept Math, Chemin Musee 23, CH-1700 Fribourg, SwitzerlandWaseda Univ, Senior High Sch, Nerima Ku, 3-31-1 Kamishakujii, Tokyo 1770044, Japan