A Central Limit Theorem for Gibbsian Invariant Measures of 2D Euler Equations

被引:0
|
作者
Francesco Grotto
Marco Romito
机构
[1] Scuola Normale Superiore,Dipartimento di Matematica
[2] Università di Pisa,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider canonical Gibbsian ensembles of Euler point vortices on the 2-dimensional torus or in a bounded domain of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}. We prove that under the Central Limit scaling of vortices intensities, and provided that the system has zero global space average in the bounded domain case (neutrality condition), the ensemble converges to the so-called energy–enstrophy Gaussian random distributions. This can be interpreted as describing Gaussian fluctuations around the mean field limit of vortices ensembles of Caglioti et al. (Commun Math Phys 143(3):501–525, 1992) and Kiessling and Wang (J Stat Phys 148(5):896–932, 2012), and it generalises the result on fluctuations of Bodineau and Guionnet (Ann Inst H Poincaré Probab Stat 35(2):205–237, 1999). The main argument consists in proving convergence of partition functions of vortices.
引用
收藏
页码:2197 / 2228
页数:31
相关论文
共 50 条
  • [41] On 2d Incompressible Euler Equations with Partial Damping
    Elgindi, Tarek
    Hu, Wenqing
    Sverak, Vladimir
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (01) : 145 - 159
  • [42] An invariant for the 3D Euler equations
    He, X
    APPLIED MATHEMATICS LETTERS, 1999, 12 (04) : 55 - 58
  • [43] Central Limit Theorem for a Family of Reliability Measures
    Zeephongsekul, P.
    RECENT ADVANCES IN RELIABILITY AND QUALITY IN DESIGN, 2008, : 3 - 30
  • [44] A central limit theorem for sets of probability measures
    Chen, Zengjing
    Epstein, Larry G.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 152 : 424 - 451
  • [45] Shock Equations and Jump Conditions for the 2D Adjoint Euler Equations
    Lozano, Carlos
    Ponsin, Jorge
    AEROSPACE, 2023, 10 (03)
  • [46] Invariant Measures of Gaussian Type for 2D Turbulence
    Hakima Bessaih
    Benedetta Ferrario
    Journal of Statistical Physics, 2012, 149 : 259 - 283
  • [47] INVARIANT MEASURES OF STOCHASTIC 2D NAVIER-STOKES EQUATIONS DRIVEN BY α-STABLE PROCESSES
    Dong, Zhao
    Xu, Lihu
    Zhang, Xicheng
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 678 - 688
  • [48] Invariant Measures of Gaussian Type for 2D Turbulence
    Bessaih, Hakima
    Ferrario, Benedetta
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (02) : 259 - 283
  • [49] Stochastic magneto-hydrodynamic equations (MHD): Invariant measures in 2D Poincare domains
    Motyl, Elzbieta
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
  • [50] CENTRAL LIMIT THEOREM FOR THE MULTILEVEL MONTE CARLO EULER METHOD
    Ben Alaya, Mohamed
    Kebaier, Armed
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (01): : 211 - 234