A Central Limit Theorem for Gibbsian Invariant Measures of 2D Euler Equations

被引:0
|
作者
Francesco Grotto
Marco Romito
机构
[1] Scuola Normale Superiore,Dipartimento di Matematica
[2] Università di Pisa,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider canonical Gibbsian ensembles of Euler point vortices on the 2-dimensional torus or in a bounded domain of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}. We prove that under the Central Limit scaling of vortices intensities, and provided that the system has zero global space average in the bounded domain case (neutrality condition), the ensemble converges to the so-called energy–enstrophy Gaussian random distributions. This can be interpreted as describing Gaussian fluctuations around the mean field limit of vortices ensembles of Caglioti et al. (Commun Math Phys 143(3):501–525, 1992) and Kiessling and Wang (J Stat Phys 148(5):896–932, 2012), and it generalises the result on fluctuations of Bodineau and Guionnet (Ann Inst H Poincaré Probab Stat 35(2):205–237, 1999). The main argument consists in proving convergence of partition functions of vortices.
引用
收藏
页码:2197 / 2228
页数:31
相关论文
共 50 条
  • [31] Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations
    Flandoli, Franco
    Galeati, Lucio
    Luo, Dejun
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) : 567 - 600
  • [32] On 2D Euler equations. I. On the energy-Casimir stabilities and the spectra for linearized 2D Euler equations
    Li, YG
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (02) : 728 - 758
  • [33] Propagation of oscillations to 2D incompressible Euler equations
    张平
    吴广荣
    仇庆久
    Science China Mathematics, 1998, (05) : 449 - 460
  • [34] Propagation of oscillations to 2D incompressible Euler equations
    Zhang, P
    Wu, GR
    Qiu, QJ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (05): : 449 - 460
  • [35] Confinement of vorticity for the 2D Euler-α equations
    Ambrose, David M.
    Lopes Filho, Milton C.
    Nussenzveig Lopes, Helena J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (11) : 5472 - 5489
  • [36] Dissipation in turbulent solutions of 2D Euler equations
    Eyink, GL
    NONLINEARITY, 2001, 14 (04) : 787 - 802
  • [37] INSTABILITY OF UNIDIRECTIONAL FLOWS FOR THE 2D α-EULER EQUATIONS
    Dullin, Holger
    Latushkin, Yuri
    Marangell, Robert
    Vasudevan, Shibi
    Worthington, Joachim
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (04) : 2051 - 2079
  • [38] Growth of solutions for QG and 2D Euler equations
    Cordoba, D
    Fefferman, C
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (03) : 665 - 670
  • [39] On 2d Incompressible Euler Equations with Partial Damping
    Tarek Elgindi
    Wenqing Hu
    Vladimír Šverák
    Communications in Mathematical Physics, 2017, 355 : 145 - 159
  • [40] Propagation of oscillations to 2D incompressible Euler equations
    Ping Zhang
    Guangrong Wu
    Qingjiu Qiu
    Science in China Series A: Mathematics, 1998, 41 : 449 - 460