A Central Limit Theorem for Gibbsian Invariant Measures of 2D Euler Equations

被引:0
|
作者
Francesco Grotto
Marco Romito
机构
[1] Scuola Normale Superiore,Dipartimento di Matematica
[2] Università di Pisa,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider canonical Gibbsian ensembles of Euler point vortices on the 2-dimensional torus or in a bounded domain of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}. We prove that under the Central Limit scaling of vortices intensities, and provided that the system has zero global space average in the bounded domain case (neutrality condition), the ensemble converges to the so-called energy–enstrophy Gaussian random distributions. This can be interpreted as describing Gaussian fluctuations around the mean field limit of vortices ensembles of Caglioti et al. (Commun Math Phys 143(3):501–525, 1992) and Kiessling and Wang (J Stat Phys 148(5):896–932, 2012), and it generalises the result on fluctuations of Bodineau and Guionnet (Ann Inst H Poincaré Probab Stat 35(2):205–237, 1999). The main argument consists in proving convergence of partition functions of vortices.
引用
收藏
页码:2197 / 2228
页数:31
相关论文
共 50 条