Finding Shortest Paths Between Graph Colourings

被引:0
|
作者
Matthew Johnson
Dieter Kratsch
Stefan Kratsch
Viresh Patel
Daniël Paulusma
机构
[1] Durham University,School of Engineering and Computing Sciences
[2] Science Laboratories,Laboratoire d’Informatique Théorique et Appliquée
[3] Université de Lorraine,Institut für Softwaretechnik und Theoretische Informatik
[4] Technische Universität Berlin,School of Mathematical Sciences
[5] Queen Mary,undefined
[6] University of London,undefined
[7] University of Amsterdam,undefined
来源
Algorithmica | 2016年 / 75卷
关键词
Graph colouring; Graph algorithms; Reconfigurations; Reconfiguration graphs; Fixed parameter tractability;
D O I
暂无
中图分类号
学科分类号
摘要
The k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem asks whether, for a given graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, two proper k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colourings α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, and a positive integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, there exists a sequence of at most ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell +1$$\end{document} proper k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colourings of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} which starts with α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and ends with β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and where successive colourings in the sequence differ on exactly one vertex of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. We give a complete picture of the parameterized complexity of the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem for each fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} when parameterized by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. First we show that the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem is polynomial-time solvable for k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document}, settling an open problem of Cereceda, van den Heuvel and Johnson. Then, for all k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 4$$\end{document}, we show that the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem, when parameterized by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, is fixed-parameter tractable (addressing a question of Mouawad, Nishimura, Raman, Simjour and Suzuki) but that it has no polynomial kernel unless the polynomial hierarchy collapses.
引用
收藏
页码:295 / 321
页数:26
相关论文
共 50 条
  • [41] SRank: Shortest paths as distance between nodes of a graph with application to RDF clustering
    Khosravi-Farsani, Hadi
    Nematbakhsh, Mohammadali
    Lausen, Georg
    JOURNAL OF INFORMATION SCIENCE, 2013, 39 (02) : 198 - 210
  • [42] Finding All Hops k-shortest Paths
    Cheng, G
    Ansari, N
    2003 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS, AND SIGNAL PROCESSING, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2003, : 474 - 477
  • [43] A DUAL SIMPLEX ALGORITHM FOR FINDING ALL SHORTEST PATHS
    FLORIAN, M
    NGUYEN, S
    PALLOTTINO, S
    NETWORKS, 1981, 11 (04) : 367 - 378
  • [44] Finding Top-k Shortest Paths with Diversity
    Liu, Huiping
    Jin, Cheqing
    Yang, Bin
    Zhou, Aoying
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (03) : 488 - 502
  • [45] A genetic algorithm for finding the k shortest paths in a network
    Hamed, Ahmed Younes
    EGYPTIAN INFORMATICS JOURNAL, 2010, 11 (02) : 75 - 79
  • [46] Finding k-shortest paths with limited overlap
    Chondrogiannis, Theodoros
    Bouros, Panagiotis
    Gamper, Johann
    Leser, Ulf
    Blumenthal, David B.
    VLDB JOURNAL, 2020, 29 (05): : 1023 - 1047
  • [47] Finding k-shortest paths with limited overlap
    Chondrogiannis, Theodoros
    Bouros, Panagiotis
    Gamper, Johann
    Leser, Ulf
    Blumenthal, David B.
    VLDB Journal, 2020, 29 (05): : 1023 - 1047
  • [48] Efficient Solutions For Finding Vitality With Respect To Shortest Paths
    Kare, Anjeneya Swami
    Saxena, Sanjeev
    2013 SIXTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2013, : 70 - 75
  • [49] A Parallel Algorithm for Finding the Shortest Exit Paths in Mines
    Jastrzab, Tomasz
    Buchcik, Agata
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017), 2017, 1906
  • [50] ON FINDING SEVERAL SHORTEST PATHS IN CERTAIN GRAPHS.
    Kedem, Zvi M.
    Fuchs, Henry
    Proceedings - Annual Allerton Conference on Communication, Control, and Computing, 1980, : 677 - 686