Finding Shortest Paths Between Graph Colourings

被引:0
|
作者
Matthew Johnson
Dieter Kratsch
Stefan Kratsch
Viresh Patel
Daniël Paulusma
机构
[1] Durham University,School of Engineering and Computing Sciences
[2] Science Laboratories,Laboratoire d’Informatique Théorique et Appliquée
[3] Université de Lorraine,Institut für Softwaretechnik und Theoretische Informatik
[4] Technische Universität Berlin,School of Mathematical Sciences
[5] Queen Mary,undefined
[6] University of London,undefined
[7] University of Amsterdam,undefined
来源
Algorithmica | 2016年 / 75卷
关键词
Graph colouring; Graph algorithms; Reconfigurations; Reconfiguration graphs; Fixed parameter tractability;
D O I
暂无
中图分类号
学科分类号
摘要
The k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem asks whether, for a given graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, two proper k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colourings α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, and a positive integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, there exists a sequence of at most ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell +1$$\end{document} proper k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colourings of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} which starts with α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and ends with β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and where successive colourings in the sequence differ on exactly one vertex of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. We give a complete picture of the parameterized complexity of the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem for each fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} when parameterized by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. First we show that the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem is polynomial-time solvable for k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document}, settling an open problem of Cereceda, van den Heuvel and Johnson. Then, for all k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 4$$\end{document}, we show that the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem, when parameterized by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, is fixed-parameter tractable (addressing a question of Mouawad, Nishimura, Raman, Simjour and Suzuki) but that it has no polynomial kernel unless the polynomial hierarchy collapses.
引用
收藏
页码:295 / 321
页数:26
相关论文
共 50 条
  • [31] FINDING K SHORTEST LOOPLESS PATHS IN A NETWORK
    YEN, JY
    MANAGEMENT SCIENCE SERIES A-THEORY, 1971, 17 (11): : 712 - 716
  • [32] A FAST ALGORITHM FOR FINDING ALL SHORTEST PATHS
    WATANABE, O
    INFORMATION PROCESSING LETTERS, 1981, 13 (01) : 1 - 3
  • [33] Finding Alternative Shortest Paths in Spatial Networks
    Xie, Kexin
    Deng, Ke
    Shang, Shuo
    Zhou, Xiaofang
    Zheng, Kai
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2012, 37 (04):
  • [34] Decomposing a graph into shortest paths with bounded eccentricity
    Birmele, Etienne
    de Montgolfier, Fabien
    Planche, Leo
    Viennot, Laurent
    DISCRETE APPLIED MATHEMATICS, 2020, 284 (284) : 353 - 374
  • [35] A PARALLEL ALGORITHM FOR THE PROBLEM OF SHORTEST PATHS ON A GRAPH
    LISTROVOY, SV
    SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1991, 29 (03): : 60 - 66
  • [36] VISIBILITIES AND SETS OF SHORTEST PATHS IN A CONNECTED GRAPH
    NEBESKY, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1995, 45 (03) : 563 - 570
  • [37] TRIPLE ALGORITHM FOR DETERMINATION OF SHORTEST PATHS IN A GRAPH
    HAMMER, G
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 12 (02): : 153 - &
  • [38] COMMENT ON COMPUTING K SHORTEST PATHS IN A GRAPH
    LAWLER, EL
    COMMUNICATIONS OF THE ACM, 1977, 20 (08) : 603 - 604
  • [39] COVERING OF GRAPH BY A SYSTEM OF THE SHORTEST SIMPLE PATHS
    IUSHMANOV, SV
    DOKLADY AKADEMII NAUK SSSR, 1982, 266 (06): : 1303 - 1305
  • [40] A New Algorithm for the Shortest Paths of Sparse Graph
    He, Zongtao
    Li, Tianzhi
    2015 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND INTELLIGENT CONTROL (ISIC 2015), 2015, : 498 - 503