Finding Shortest Paths Between Graph Colourings

被引:0
|
作者
Matthew Johnson
Dieter Kratsch
Stefan Kratsch
Viresh Patel
Daniël Paulusma
机构
[1] Durham University,School of Engineering and Computing Sciences
[2] Science Laboratories,Laboratoire d’Informatique Théorique et Appliquée
[3] Université de Lorraine,Institut für Softwaretechnik und Theoretische Informatik
[4] Technische Universität Berlin,School of Mathematical Sciences
[5] Queen Mary,undefined
[6] University of London,undefined
[7] University of Amsterdam,undefined
来源
Algorithmica | 2016年 / 75卷
关键词
Graph colouring; Graph algorithms; Reconfigurations; Reconfiguration graphs; Fixed parameter tractability;
D O I
暂无
中图分类号
学科分类号
摘要
The k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem asks whether, for a given graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, two proper k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colourings α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, and a positive integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, there exists a sequence of at most ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell +1$$\end{document} proper k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colourings of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} which starts with α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and ends with β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and where successive colourings in the sequence differ on exactly one vertex of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. We give a complete picture of the parameterized complexity of the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem for each fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} when parameterized by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. First we show that the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem is polynomial-time solvable for k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document}, settling an open problem of Cereceda, van den Heuvel and Johnson. Then, for all k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 4$$\end{document}, we show that the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-colouring reconfiguration problem, when parameterized by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, is fixed-parameter tractable (addressing a question of Mouawad, Nishimura, Raman, Simjour and Suzuki) but that it has no polynomial kernel unless the polynomial hierarchy collapses.
引用
收藏
页码:295 / 321
页数:26
相关论文
共 50 条
  • [1] Finding Shortest Paths Between Graph Colourings
    Johnson, Matthew
    Kratsch, Dieter
    Kratsch, Stefan
    Patel, Viresh
    Paulusma, Daniel
    ALGORITHMICA, 2016, 75 (02) : 295 - 321
  • [2] Finding Shortest Paths Between Graph Colourings
    Johnson, Matthew
    Kratsch, Dieter
    Kratsch, Stefan
    Patel, Viresh
    Paulusma, Daniel
    PARAMETERIZED AND EXACT COMPUTATION, IPEC 2014, 2014, 8894 : 221 - 233
  • [3] Finding paths between graph colourings: PSPACE-Completeness and superpolynomial distances
    Bonsma, Paul
    Cereceda, Luis
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2007, PROCEEDINGS, 2007, 4708 : 738 - +
  • [4] Finding Paths between graph colourings: PSPACE-completeness and superpolynomial distances
    Bonsma, Paul
    Cereceda, Luis
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (50) : 5215 - 5226
  • [5] Finding next-to-shortest paths in a graph
    Krasikov, I
    Noble, SD
    INFORMATION PROCESSING LETTERS, 2004, 92 (03) : 117 - 119
  • [6] Tweet Integration by Finding the Shortest Paths on a Word Graph
    Huyen Trang Phan
    Dinh Tuyen Hoang
    Ngoc Thanh Nguyen
    Hwang, Dosam
    MODERN APPROACHES FOR INTELLIGENT INFORMATION AND DATABASE SYSTEMS, 2018, 769 : 87 - 97
  • [7] An intuitionistic fuzzy graph method for finding the shortest paths in networks
    Karunambigai, M. G.
    Rangasamy, Parvathi
    Atanassov, Krassimir
    Palaniappan, N.
    THEORETICAL ADVANCES AND APPLICATIONS OF FUZZY LOGIC AND SOFT COMPUTING, 2007, 42 : 3 - +
  • [8] An algorithmic approach for finding the fuzzy constrained shortest paths in a fuzzy graph
    Xiaoqun Liao
    JiaYi Wang
    Li Ma
    Complex & Intelligent Systems, 2021, 7 : 17 - 27
  • [9] An algorithmic approach for finding the fuzzy constrained shortest paths in a fuzzy graph
    Liao, Xiaoqun
    Wang, JiaYi
    Ma, Li
    COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (01) : 17 - 27
  • [10] Shortest paths between shortest paths
    Kaminski, Marcin
    Medvedev, Paul
    Milanic, Martin
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (39) : 5205 - 5210