Prediction of magnetocaloric effect using a phenomenological model in (x) La0.6Ca0.4MnO3/(1 − x) La0.6Sr0.4MnO3 composites

被引:0
|
作者
H. Gharsallah
M. Jeddi
M. Bejar
E. Dhahri
E. K. Hlil
机构
[1] Université de Sfax,Laboratoire de Physique Appliquée, Faculté des Sciences
[2] Université de Sfax,Institut Préparatoire aux Études d’Ingénieur de Sfax
[3] CNRS Université J. Fourier,Institut Néel
来源
Applied Physics A | 2019年 / 125卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This research paper presents a theoretical work on the magnetocaloric properties of (SC.4-2) composite obtained by mixing citric-gel La0.6Ca0.4MnO3 (S0C1) and La0.6Sr0.4MnO3 (S1C0), with mole fractions [0.875 (S0C1)/0.125 (S1C0)]. This mixture was then fritted at 900 °C. The magnetization of the composite goes in good agreement with the following relationship M(SC.4-2)=0.865×M(S0C1)+0.135×M(S1C0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(\mathrm{S}\mathrm{C}.4{\text{-}}2)=0.865\times M(\mathrm{S}0\mathrm{C}1)+0.135 \times M(\mathrm{S}1\mathrm{C}0)$$\end{document}, where (0.865, 0.135) are the corresponding weight fractions to mole fractions (0.875, 0.125) of parent compounds [(S0C1) (S1C0)]. Resting upon this equality, the magnetic entropy change and the specific heat of composite were predicted at a constant field and pressure. The variation of the magnetic entropy ΔSM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|{\Delta S}_{M}\right|$$\end{document} and the heat capacity ΔCP,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P,H}$$\end{document} as a function of temperature of the two parent compounds (S0C1) and (S1C0), with a phenomenological model, were obtained in our previous research work. The values of the maximum magnetic entropy change ΔSMmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left|\left({\Delta S}_{M}\right)\right|}_{\mathrm{m}\mathrm{a}\mathrm{x}}$$\end{document}, full width at half-maximum δTFWHM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\updelta} T_{\mathrm{F}\mathrm{W}\mathrm{H}\mathrm{M}}$$\end{document} and relative cooling power (RCP), at several magnetic field variations, were determined. In addition to the S0C1 mother compound, the SC.4-2 composite displays the highest value of RCP, providing an estimate of the quantity of the heat transfer between the hot (Thot) and cold (Tcold) ends during one refrigeration cycle. At a later stage, the study of the dependence on temperature of the magnetic entropy of (x) S0C1/(1 − x) S1C0 composites reveals that the optimum composition stands for x = 0.4. Indeed, it gives comparable contributions of two parent compounds, leading to a practically uniform variation of entropy over a wide temperature range.
引用
收藏
相关论文
共 50 条
  • [31] Magnetic Phase Transition, Magneto-transport Properties, and Coexistence of Magnetocaloric and Magnetoresitance in (La0.6Sr0.4MnO3)1−x(CuO)x Composites
    Abdullah H. Alshehri
    M. Nasri
    Sobhi Hcini
    Mohamed Lamjed Bouazizi
    E. Dhahri
    Journal of Superconductivity and Novel Magnetism, 2023, 36 : 275 - 287
  • [32] Structural, magnetic and theoretical investigation of the magnetocaloric effect of La0.6Sr0.4MnO3/x(Sb2O3) compound
    Nasri, M.
    Khelifi, J.
    Laifi, J.
    Hcini, Fakher
    Alzahrani, Bandar
    Bouazizi, Mohamed Lamjed
    Dhahri, E.
    Hlil, E. K.
    PHASE TRANSITIONS, 2021, 94 (3-4) : 170 - 182
  • [33] Thickness dependent electronic structure of La0.6Sr0.4MnO3 layer in SrTiO3/La0.6Sr0.4MnO3/SrTiO3 heterostructures studied by hard x-ray photoemission spectroscopy
    Yoshimatsu, K.
    Horiba, K.
    Kumigashira, H.
    Ikenaga, E.
    Oshima, M.
    APPLIED PHYSICS LETTERS, 2009, 94 (07)
  • [34] Field Dependence of the Refrigerant Capacity for La0.6Ca0.4MnO3 Manganite
    Szymczak, R.
    Kolano-Burian, A.
    Kolano, R.
    Puzniak, R.
    Dyakonov, V. P.
    Zubov, E. E.
    Iesenchuk, O.
    Szymczak, H.
    SMART MATERIALS FOR SMART DEVICES AND STRUCTURES, 2009, 154 : 163 - +
  • [35] X-ray photoemission valence band spectrum of La0.6Sr0.4MnO3 perovskite
    Kowalczyk, A.
    Szajek, A.
    Smardz, L.
    Baszyński, J.
    Physica Status Solidi (B) Basic Research, 2000, 220 (02):
  • [36] Room-temperature photoswitching in La0.6Sr0.4MnO3 film
    Liu, XJ
    Machida, A
    Moritomo, Y
    Ichida, M
    Nakamura, A
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2000, 39 (7A): : L670 - L672
  • [37] Thickness dependence of the properties of La0.6Sr0.4MnO3 thin films
    Sirena, M
    Steren, L
    Guimpel, J
    THIN SOLID FILMS, 2000, 373 (1-2) : 102 - 106
  • [38] X-ray photoemission valence band spectrum of La0.6Sr0.4MnO3 perovskite
    Kowalczyk, A
    Szajek, A
    Smardz, L
    Bayszynski, J
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2000, 220 (02): : R9 - R10
  • [39] Enhanced near room temperature magnetocaloric effect in La0.6Ca0.4MnO3 for magnetic refrigeration application
    Tsui, Melissa H. M.
    Dryer, Devon T.
    El-Gendy, Ahmed A.
    Carpenter, Everett E.
    RSC ADVANCES, 2017, 7 (74): : 46589 - 46593
  • [40] Electrical transport and magnetoresistance properties of (1-x)La0.6Sr0.4MnO3/x(Sb2O3) composites
    Nasri, M.
    Triki, M.
    Dhahri, E.
    Hlil, E. K.
    Lachkar, P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 576 : 404 - 408