Prediction of magnetocaloric effect using a phenomenological model in (x) La0.6Ca0.4MnO3/(1 − x) La0.6Sr0.4MnO3 composites

被引:0
|
作者
H. Gharsallah
M. Jeddi
M. Bejar
E. Dhahri
E. K. Hlil
机构
[1] Université de Sfax,Laboratoire de Physique Appliquée, Faculté des Sciences
[2] Université de Sfax,Institut Préparatoire aux Études d’Ingénieur de Sfax
[3] CNRS Université J. Fourier,Institut Néel
来源
Applied Physics A | 2019年 / 125卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This research paper presents a theoretical work on the magnetocaloric properties of (SC.4-2) composite obtained by mixing citric-gel La0.6Ca0.4MnO3 (S0C1) and La0.6Sr0.4MnO3 (S1C0), with mole fractions [0.875 (S0C1)/0.125 (S1C0)]. This mixture was then fritted at 900 °C. The magnetization of the composite goes in good agreement with the following relationship M(SC.4-2)=0.865×M(S0C1)+0.135×M(S1C0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(\mathrm{S}\mathrm{C}.4{\text{-}}2)=0.865\times M(\mathrm{S}0\mathrm{C}1)+0.135 \times M(\mathrm{S}1\mathrm{C}0)$$\end{document}, where (0.865, 0.135) are the corresponding weight fractions to mole fractions (0.875, 0.125) of parent compounds [(S0C1) (S1C0)]. Resting upon this equality, the magnetic entropy change and the specific heat of composite were predicted at a constant field and pressure. The variation of the magnetic entropy ΔSM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|{\Delta S}_{M}\right|$$\end{document} and the heat capacity ΔCP,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P,H}$$\end{document} as a function of temperature of the two parent compounds (S0C1) and (S1C0), with a phenomenological model, were obtained in our previous research work. The values of the maximum magnetic entropy change ΔSMmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left|\left({\Delta S}_{M}\right)\right|}_{\mathrm{m}\mathrm{a}\mathrm{x}}$$\end{document}, full width at half-maximum δTFWHM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\updelta} T_{\mathrm{F}\mathrm{W}\mathrm{H}\mathrm{M}}$$\end{document} and relative cooling power (RCP), at several magnetic field variations, were determined. In addition to the S0C1 mother compound, the SC.4-2 composite displays the highest value of RCP, providing an estimate of the quantity of the heat transfer between the hot (Thot) and cold (Tcold) ends during one refrigeration cycle. At a later stage, the study of the dependence on temperature of the magnetic entropy of (x) S0C1/(1 − x) S1C0 composites reveals that the optimum composition stands for x = 0.4. Indeed, it gives comparable contributions of two parent compounds, leading to a practically uniform variation of entropy over a wide temperature range.
引用
收藏
相关论文
共 50 条
  • [21] Critical Behavior in the La0.6Ca0.4MnO3 Perovskite Manganite
    Abir Nasri
    E. K. Hlil
    M. Ellouze
    F. Elhalouani
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 2757 - 2763
  • [22] Inherent charge transfer layer formation at La0.6Sr0.4FeO3/La0.6Sr0.4MnO3 heterointerface
    Kumigashira, H
    Kobayashi, D
    Hashimoto, R
    Chikamatsu, A
    Oshima, M
    Nakagawa, N
    Ohnishi, T
    Lippmaa, M
    Wadati, H
    Fujimori, A
    Ono, K
    Kawasaki, M
    Koinuma, H
    APPLIED PHYSICS LETTERS, 2004, 84 (26) : 5353 - 5355
  • [23] Effect of sintering temperature on structure, magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 manganite
    Lee, Seung Rok
    Anwar, M. S.
    Ahmed, Faheem
    Koo, Bon Heun
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 : S141 - S145
  • [24] An investigation on magnetic interacting La0.6Sr0.4MnO3 nanoparticles
    Ehsani, M. H.
    Kameli, P.
    Ghazi, M. E.
    Razavi, F. S.
    ULTRAFINE GRAINED AND NANO-STRUCTURED MATERIALS IV, 2014, 829 : 712 - +
  • [25] Structure characterization and magnetic properties of oxide superlattices La0.6Sr0.4MnO3/La0.6Sr0.4FeO3
    Izumi, M
    Murakami, Y
    Konishi, Y
    Manako, T
    Kawasaki, M
    Tokura, Y
    PHYSICAL REVIEW B, 1999, 60 (02): : 1211 - 1215
  • [26] Magnetocaloric properties of La0.6Sr0.4MnO3 prepared by solid state reaction method
    Raoufi, T.
    Ehsani, M. H.
    Khoshnoud, D. Sanavi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 689 : 865 - 873
  • [27] Critical Behavior in the La0.6Ca0.4MnO3 Perovskite Manganite
    Nasri, Abir
    Hlil, E. K.
    Ellouze, M.
    Elhalouani, F.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2014, 27 (12) : 2757 - 2763
  • [28] Prediction of magnetocaloric effect in La0.6Ca0.4-xSrxMnO3 compounds for x=0, 0.05 and 0.4 with phenomenological model
    Gharsallah, H.
    Bejar, M.
    Dhahri, E.
    Hlil, E. K.
    Bessais, L.
    CERAMICS INTERNATIONAL, 2016, 42 (01) : 697 - 704
  • [29] Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality
    Andrade, V. M.
    Vivas, R. J. Caraballo
    Pedro, S. S.
    Tedesco, J. C. G.
    Rossi, A. L.
    Coelho, A. A.
    Rocco, D. L.
    Reis, M. S.
    ACTA MATERIALIA, 2016, 102 : 49 - 55
  • [30] Synthesis and characterization of (1-x)(La0.6Ca0.4MnO3)/x(Sb2O3) ceramic composites
    Amri, N.
    Nasri, M.
    Triki, M.
    Dhahri, E.
    PHASE TRANSITIONS, 2019, 92 (01) : 52 - 64