Prediction of magnetocaloric effect using a phenomenological model in (x) La0.6Ca0.4MnO3/(1 − x) La0.6Sr0.4MnO3 composites

被引:0
|
作者
H. Gharsallah
M. Jeddi
M. Bejar
E. Dhahri
E. K. Hlil
机构
[1] Université de Sfax,Laboratoire de Physique Appliquée, Faculté des Sciences
[2] Université de Sfax,Institut Préparatoire aux Études d’Ingénieur de Sfax
[3] CNRS Université J. Fourier,Institut Néel
来源
Applied Physics A | 2019年 / 125卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This research paper presents a theoretical work on the magnetocaloric properties of (SC.4-2) composite obtained by mixing citric-gel La0.6Ca0.4MnO3 (S0C1) and La0.6Sr0.4MnO3 (S1C0), with mole fractions [0.875 (S0C1)/0.125 (S1C0)]. This mixture was then fritted at 900 °C. The magnetization of the composite goes in good agreement with the following relationship M(SC.4-2)=0.865×M(S0C1)+0.135×M(S1C0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(\mathrm{S}\mathrm{C}.4{\text{-}}2)=0.865\times M(\mathrm{S}0\mathrm{C}1)+0.135 \times M(\mathrm{S}1\mathrm{C}0)$$\end{document}, where (0.865, 0.135) are the corresponding weight fractions to mole fractions (0.875, 0.125) of parent compounds [(S0C1) (S1C0)]. Resting upon this equality, the magnetic entropy change and the specific heat of composite were predicted at a constant field and pressure. The variation of the magnetic entropy ΔSM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|{\Delta S}_{M}\right|$$\end{document} and the heat capacity ΔCP,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P,H}$$\end{document} as a function of temperature of the two parent compounds (S0C1) and (S1C0), with a phenomenological model, were obtained in our previous research work. The values of the maximum magnetic entropy change ΔSMmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left|\left({\Delta S}_{M}\right)\right|}_{\mathrm{m}\mathrm{a}\mathrm{x}}$$\end{document}, full width at half-maximum δTFWHM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\updelta} T_{\mathrm{F}\mathrm{W}\mathrm{H}\mathrm{M}}$$\end{document} and relative cooling power (RCP), at several magnetic field variations, were determined. In addition to the S0C1 mother compound, the SC.4-2 composite displays the highest value of RCP, providing an estimate of the quantity of the heat transfer between the hot (Thot) and cold (Tcold) ends during one refrigeration cycle. At a later stage, the study of the dependence on temperature of the magnetic entropy of (x) S0C1/(1 − x) S1C0 composites reveals that the optimum composition stands for x = 0.4. Indeed, it gives comparable contributions of two parent compounds, leading to a practically uniform variation of entropy over a wide temperature range.
引用
收藏
相关论文
共 50 条
  • [1] Prediction of magnetocaloric effect using a phenomenological model in (x) La0.6Ca0.4MnO3/(1-x) La0.6Sr0.4MnO3 composites
    Gharsallah, H.
    Jeddi, M.
    Bejar, M.
    Dhahri, E.
    Hlil, E. K.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (08):
  • [2] Magnetic anisotropy and superparamagnetism in La0.6Ca0.4MnO3, La0.6Sr0.4MnO3 and their mixed composition 0.875 La0.6Ca0.4MnO3/0.125 La0.6Ca0.4MnO3, agglomerated at different temperatures
    Gharsallah, H.
    Souissi, A.
    Bejar, M.
    Dhahri, E.
    Hlil, E. K.
    MATERIALS CHEMISTRY AND PHYSICS, 2016, 182 : 429 - 438
  • [3] Improvement of magnetocaloric properties around room temperature in (1-x) La0.6Ca0.4MnO3/(x) La0.6Sr0.4MnO3 (0 ≤ x ≤ 1) composite system
    Jeddi, M.
    Gharsallah, H.
    Bekri, M.
    Dhahri, E.
    Hlil, E. K.
    PHASE TRANSITIONS, 2020, 93 (03) : 311 - 322
  • [4] Magnetocaloric properties of La0.6Ca0.4MnO3
    Mahmoud Aly Hamad
    Journal of Thermal Analysis and Calorimetry, 2013, 113 : 609 - 613
  • [5] Magnetocaloric properties of La0.6Ca0.4MnO3
    Hamad, Mahmoud Aly
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 113 (02) : 609 - 613
  • [6] Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3
    Bohigas, X
    Tejada, J
    Marínez-Sarrión, ML
    Tripp, S
    Black, R
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2000, 208 (1-2) : 85 - 92
  • [7] Combustion synthesis of alkaline-earth substituted lanthanum manganites;: LaMnO3, La0.6Ca0.4MnO3 and La0.6Sr0.4MnO3
    Kuznetsov, MV
    Parkin, IP
    Caruana, DJ
    Morozov, YG
    JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (09) : 1377 - 1382
  • [8] Phenomenological Modeling of Magnetocaloric Properties in 0.75La0.6Ca0.4MnO3/0.25La0.6Sr0.4MnO3 Nanocomposite Manganite
    Jeddi, M.
    Gharsallah, H.
    Bekri, M.
    Dhahri, E.
    Hlil, E. K.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 198 (3-4) : 135 - 144
  • [9] Phenomenological Modeling of Magnetocaloric Properties in 0.75La0.6Ca0.4MnO3/0.25La0.6Sr0.4MnO3 Nanocomposite Manganite
    M. Jeddi
    H. Gharsallah
    M. Bekri
    E. Dhahri
    E. K. Hlil
    Journal of Low Temperature Physics, 2020, 198 : 135 - 144
  • [10] Tunable magnetic and magnetocaloric properties of La0.6Sr0.4MnO3 nanoparticles
    Ehsani, M. H.
    Kameli, P.
    Ghazi, M. E.
    Razavi, F. S.
    Taheri, M.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (22)