Exact multiplicity of solutions for discrete second order Neumann boundary value problems

被引:0
|
作者
Dingyong Bai
Hairong Lian
Haiyan Wang
机构
[1] Guangzhou University,School of Mathematics and Information Science
[2] Guangzhou University,Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes
[3] China University of Geosciences,School of Science
[4] Northwest Normal University,Department of Mathematics
[5] North University of China,Department of Mathematics
[6] Arizona State University,School of Mathematical and Natural Sciences
来源
关键词
difference equation; Neumann boundary value problem; exact numbers of solutions and positive solutions;
D O I
暂无
中图分类号
学科分类号
摘要
Our concern is the second order difference equation Δ2u(t−1)+g(u(t))=h(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{2} u(t-1)+g(u(t))=h(t)$\end{document} subject to the Neumann boundary conditions Δu(0)=Δu(T)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta u(0)=\Delta u(T)=0$\end{document}. Under convex/concave conditions imposed on g, some results on the exact numbers of solutions and positive solutions are established based on the discussions to the maximum and minimum numbers of (positive) solutions.
引用
收藏
相关论文
共 50 条
  • [41] On eigenvalue intervals for discrete second order boundary value problems
    Du Z.-J.
    Xue C.-Y.
    Ge W.-G.
    Acta Mathematicae Applicatae Sinica, 2005, 21 (1) : 105 - 114
  • [42] On boundary value problems for second-order discrete inclusions
    Petr Stehlík
    Christopher C Tisdell
    Boundary Value Problems, 2005
  • [43] On boundary value problems for second-order discrete inclusions
    Stehlik, Petr
    Tisdell, Christopher C.
    BOUNDARY VALUE PROBLEMS, 2005, 2005 (02) : 153 - 163
  • [44] Existence and multiplicity of solutions of second-order discrete Neumann problem with singular ϕ-Laplacian operator
    Yanqiong Lu
    Ruyun Ma
    Advances in Difference Equations, 2014
  • [45] Multiplicity theorems for discrete boundary value problems
    Faraci F.
    Iannizzotto A.
    Aequationes mathematicae, 2007, 74 (1-2) : 111 - 118
  • [46] Existence and multiplicity of solutions of second-order discrete Neumann problem with singular φ-Laplacian operator
    Lu, Yanqiong
    Ma, Ruyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [47] Existence and multiplicity for positive solutions of a second-order multi-point discrete boundary value problem
    Henderson, Johnny
    Luca, Rodica
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (03) : 418 - 438
  • [48] A Global Description of the Positive Solutions of Sublinear Second-Order Discrete Boundary Value Problems
    Ma, Ruyun
    Xu, Youji
    Gao, Chenghua
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [49] Sign-Changing Solutions for Discrete Second-Order Periodic Boundary Value Problems
    Tieshan He
    Yiwen Zhou
    Yuantong Xu
    Chuanyong Chen
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 181 - 195
  • [50] Existence of positive solutions to discrete second-order boundary value problems with indefinite weight
    Chenghua Gao
    Guowei Dai
    Ruyun Ma
    Advances in Difference Equations, 2012