Exact multiplicity of solutions for discrete second order Neumann boundary value problems

被引:0
|
作者
Dingyong Bai
Hairong Lian
Haiyan Wang
机构
[1] Guangzhou University,School of Mathematics and Information Science
[2] Guangzhou University,Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes
[3] China University of Geosciences,School of Science
[4] Northwest Normal University,Department of Mathematics
[5] North University of China,Department of Mathematics
[6] Arizona State University,School of Mathematical and Natural Sciences
来源
关键词
difference equation; Neumann boundary value problem; exact numbers of solutions and positive solutions;
D O I
暂无
中图分类号
学科分类号
摘要
Our concern is the second order difference equation Δ2u(t−1)+g(u(t))=h(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{2} u(t-1)+g(u(t))=h(t)$\end{document} subject to the Neumann boundary conditions Δu(0)=Δu(T)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta u(0)=\Delta u(T)=0$\end{document}. Under convex/concave conditions imposed on g, some results on the exact numbers of solutions and positive solutions are established based on the discussions to the maximum and minimum numbers of (positive) solutions.
引用
收藏
相关论文
共 50 条