Hardness of k-Vertex-Connected Subgraph Augmentation Problem

被引:0
|
作者
Changcun Ma
Donghyun Kim
Yuexuan Wang
Wei Wang
Nassim Sohaee
Weili Wu
机构
[1] Tsinghua University,Institute for Theoretical Computer Science
[2] University of Texas at Dallas,Department of Computer Science
[3] Xi’an Jiaotong University,Department of Mathematics
来源
关键词
Network survivability; Graph connectivity;
D O I
暂无
中图分类号
学科分类号
摘要
Given a k-connected graph G=(V,E) and V′⊂V, k-Vertex-Connected Subgraph Augmentation Problem (k-VCSAP) is to find S⊂V∖V′ with minimum cardinality such that the subgraph induced by V′∪S is k-connected. In this paper, we study the hardness of k-VCSAP in undirect graphs. We first prove k-VCSAP is APX-hard. Then, we improve the lower bound in two ways by relying on different assumptions. That is, we prove no algorithm for k-VCSAP has a PR better than O(log (log n)) unless P=NP and O(log n) unless NP⊆DTIME(nO(log log n)), where n is the size of an input graph.
引用
收藏
页码:249 / 258
页数:9
相关论文
共 50 条
  • [21] PARALLEL COMPLEXITY OF THE CONNECTED SUBGRAPH PROBLEM
    KIROUSIS, LM
    SERNA, M
    SPIRAKIS, P
    SIAM JOURNAL ON COMPUTING, 1993, 22 (03) : 573 - 586
  • [22] On approximability of the minimum-cost k-connected spanning subgraph problem
    Czumaj, A
    Lingas, A
    PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1999, : 281 - 290
  • [23] The k-node-connected subgraph problem: Facets and Branch-and-Cut
    Diarrassouba, Ibrahima
    Mahjoub, Meriem
    Mahjoub, A. Ridha
    PROCEEDINGS OF THE 2016 12TH INTERNATIONAL CONFERENCE ON THE DESIGN OF RELIABLE COMMUNICATION NETWORKS (DRCN 2016), 2016, : 1 - 8
  • [24] A Branch-and-Cut Algorithm for the k-Edge Connected Subgraph Problem
    Bendali, F.
    Diarrassouba, I.
    Mahjoub, A. R.
    Biha, M. Didi
    Mailfert, J.
    NETWORKS, 2010, 55 (01) : 13 - 32
  • [25] The Dense k -Subgraph Problem
    U. Feige
    D. Peleg
    G. Kortsarz
    Algorithmica, 2001, 29 : 410 - 421
  • [26] The k-hop connected dominating set problem: approximation and hardness
    Coelho, Rafael S.
    Moura, Phablo F. S.
    Wakabayashi, Yoshiko
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (04) : 1060 - 1083
  • [27] The k-hop connected dominating set problem: approximation and hardness
    Rafael S. Coelho
    Phablo F. S. Moura
    Yoshiko Wakabayashi
    Journal of Combinatorial Optimization, 2017, 34 : 1060 - 1083
  • [28] On the minimum-cost lambda-edge-connected k-subgraph problem
    Sadeghi, Elham
    Fan, Neng
    COMPUTATIONAL MANAGEMENT SCIENCE, 2016, 13 (04) : 571 - 596
  • [29] An Improved Approximation Algorithm for the Minimum Cost Subset k-Connected Subgraph Problem
    Bundit Laekhanukit
    Algorithmica, 2015, 72 : 714 - 733
  • [30] An Improved Approximation Algorithm for the Minimum Cost Subset k-Connected Subgraph Problem
    Laekhanukit, Bundit
    ALGORITHMICA, 2015, 72 (03) : 714 - 733