Hardness of k-Vertex-Connected Subgraph Augmentation Problem

被引:0
|
作者
Changcun Ma
Donghyun Kim
Yuexuan Wang
Wei Wang
Nassim Sohaee
Weili Wu
机构
[1] Tsinghua University,Institute for Theoretical Computer Science
[2] University of Texas at Dallas,Department of Computer Science
[3] Xi’an Jiaotong University,Department of Mathematics
来源
关键词
Network survivability; Graph connectivity;
D O I
暂无
中图分类号
学科分类号
摘要
Given a k-connected graph G=(V,E) and V′⊂V, k-Vertex-Connected Subgraph Augmentation Problem (k-VCSAP) is to find S⊂V∖V′ with minimum cardinality such that the subgraph induced by V′∪S is k-connected. In this paper, we study the hardness of k-VCSAP in undirect graphs. We first prove k-VCSAP is APX-hard. Then, we improve the lower bound in two ways by relying on different assumptions. That is, we prove no algorithm for k-VCSAP has a PR better than O(log (log n)) unless P=NP and O(log n) unless NP⊆DTIME(nO(log log n)), where n is the size of an input graph.
引用
收藏
页码:249 / 258
页数:9
相关论文
共 50 条
  • [1] Hardness of k-Vertex-Connected Subgraph Augmentation Problem
    Ma, Changcun
    Kim, Donghyun
    Wang, Yuexuan
    Wang, Wei
    Sohaee, Nassim
    Wu, Weili
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2010, 20 (03) : 249 - 258
  • [2] Augmenting a (k - 1)-Vertex-Connected Multigraph ℓ-Edge-Connected and k-Vertex-Connected Multigraph
    Toshimasa Ishii
    Hiroshi Nagamochi
    Toshihide Ibaraki
    Algorithmica, 2006, 44 : 257 - 280
  • [3] Augmenting a (k-1)-vertex-connected multigraph to an l-edge-connected and k-vertex-connected multigraph
    Ishii, T
    Nagamochi, H
    Ibaraki, T
    ALGORITHMICA, 2006, 44 (03) : 257 - 280
  • [4] Augmentin a (k-1)-vertex-connected multigraph to an l-edge-connected and k-vertex-connected multigraph
    Ishii, T
    Nagamochi, H
    Ibaraki, T
    ALGORITHMS - ESA'99, 1999, 1643 : 414 - 425
  • [5] AN O(log2 k)-APPROXIMATION ALGORITHM FOR THE k-VERTEX CONNECTED SPANNING SUBGRAPH PROBLEM
    Fakcharoenphol, Jittat
    Laekhanukit, Bundit
    SIAM JOURNAL ON COMPUTING, 2012, 41 (05) : 1095 - 1109
  • [6] An O(log2 k)-Approximation Algorithm for the k-Vertex Connected Spanning Subgraph Problem
    Fakcharoenphol, Jittat
    Laekhanukit, Bundit
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 153 - 158
  • [7] A problem of finding the maximal spanning connected subgraph with given vertex degrees
    Gimadi, EK
    Serdyukov, AI
    OPERATIONS RESEARCH PROCEEDINGS 2000, 2001, : 55 - 59
  • [8] An approximation algorithm for the minimum-cost k-vertex connected subgraph
    Cheriyan, J
    Vempala, S
    Vetta, A
    SIAM JOURNAL ON COMPUTING, 2003, 32 (04) : 1050 - 1055
  • [9] Optimal Augmentation of a 2-Vertex-Connected Multigraph to a k-Edge-Connected and 3-Vertex-Connected Multigraph
    Toshimasa Ishii
    Hiroshi Nagamochi
    Toshihide Ibaraki
    Journal of Combinatorial Optimization, 2000, 4 : 35 - 77
  • [10] The Unbalanced Connected Subgraph Problem
    Gong, Shaohui
    Zhu, Cheng
    Tang, Luohao
    Zhu, Xianqiang
    Yu, Lianfei
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 130 - 140