Invariants for trees of non-archimedean polynomials and skeleta of superelliptic curves

被引:0
|
作者
Paul Alexander Helminck
机构
[1] Durham University,Department of Mathematics
来源
Mathematische Zeitschrift | 2022年 / 301卷
关键词
14G22; 11G30; 14T05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we generalize the j-invariant criterion for the semistable reduction type of an elliptic curve to superelliptic curves X given by yn=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^{n}=f(x)$$\end{document}. We first define a set of tropical invariants for f(x) using symmetrized Plücker coordinates and we show that these invariants determine the tree associated to f(x). This tree then completely determines the reduction type of X for n that are not divisible by the residue characteristic. The conditions on the tropical invariants that distinguish between the different types are given by half-spaces as in the elliptic curve case. These half-spaces arise naturally as the moduli spaces of certain Newton polygon configurations. We give a procedure to write down their equations and we illustrate this by giving the half-spaces for polynomials of degree d≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le {5}$$\end{document}.
引用
收藏
页码:1259 / 1297
页数:38
相关论文
共 50 条
  • [41] Non-Archimedean Probability
    Benci, Vieri
    Horsten, Leon
    Wenmackers, Sylvia
    MILAN JOURNAL OF MATHEMATICS, 2013, 81 (01) : 121 - 151
  • [42] NON-ARCHIMEDEAN STRINGS
    FREUND, PGO
    OLSON, M
    PHYSICS LETTERS B, 1987, 199 (02) : 186 - 190
  • [43] Non-Archimedean Probability
    Vieri Benci
    Leon Horsten
    Sylvia Wenmackers
    Milan Journal of Mathematics, 2013, 81 : 121 - 151
  • [44] NON-ARCHIMEDEAN ORTHOGONALITY
    SHILKRET, N
    ARCHIV DER MATHEMATIK, 1976, 27 (01) : 67 - 78
  • [45] NON-ARCHIMEDEAN FIELD
    DEAN, DW
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (06): : 691 - &
  • [46] NON-ARCHIMEDEAN FIELD
    RIESENBE.NR
    DAVIES, RO
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (01): : 85 - &
  • [47] Non-Archimedean modernities
    Scheidel, Walter
    INTERDISCIPLINARY SCIENCE REVIEWS, 2022, 47 (3-4) : 520 - 529
  • [48] NON-ARCHIMEDEAN GNS CONSTRUCTION AND NON-ARCHIMEDEAN KREIN-MILMAN THEOREM
    Mihara, Tomoki
    OPERATORS AND MATRICES, 2017, 11 (04): : 969 - 998
  • [49] Non-archimedean pinchings
    Michael Temkin
    Mathematische Zeitschrift, 2022, 301 : 2099 - 2109
  • [50] Differentiability of non-archimedean volumes and non-archimedean Monge-Ampere equations
    Burgos Gil, Jose Ignacio
    Gubler, Walter
    Jell, Philipp
    Kuennemann, Klaus
    Martin, Florent
    Lazarsfeld, Robert
    ALGEBRAIC GEOMETRY, 2020, 7 (02): : 113 - 152