In this paper we generalize the j-invariant criterion for the semistable reduction type of an elliptic curve to superelliptic curves X given by yn=f(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$y^{n}=f(x)$$\end{document}. We first define a set of tropical invariants for f(x) using symmetrized Plücker coordinates and we show that these invariants determine the tree associated to f(x). This tree then completely determines the reduction type of X for n that are not divisible by the residue characteristic. The conditions on the tropical invariants that distinguish between the different types are given by half-spaces as in the elliptic curve case. These half-spaces arise naturally as the moduli spaces of certain Newton polygon configurations. We give a procedure to write down their equations and we illustrate this by giving the half-spaces for polynomials of degree d≤5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d\le {5}$$\end{document}.
机构:
Tokyo Inst Technol, Grad Sch Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, JapanTokyo Inst Technol, Grad Sch Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
Irokawa, Reimi
Okuyama, Yusuke
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Inst Technol, Div Math, Sakyo Ku, Kyoto 6068585, JapanTokyo Inst Technol, Grad Sch Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan