Invariants for trees of non-archimedean polynomials and skeleta of superelliptic curves

被引:0
|
作者
Paul Alexander Helminck
机构
[1] Durham University,Department of Mathematics
来源
Mathematische Zeitschrift | 2022年 / 301卷
关键词
14G22; 11G30; 14T05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we generalize the j-invariant criterion for the semistable reduction type of an elliptic curve to superelliptic curves X given by yn=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^{n}=f(x)$$\end{document}. We first define a set of tropical invariants for f(x) using symmetrized Plücker coordinates and we show that these invariants determine the tree associated to f(x). This tree then completely determines the reduction type of X for n that are not divisible by the residue characteristic. The conditions on the tropical invariants that distinguish between the different types are given by half-spaces as in the elliptic curve case. These half-spaces arise naturally as the moduli spaces of certain Newton polygon configurations. We give a procedure to write down their equations and we illustrate this by giving the half-spaces for polynomials of degree d≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le {5}$$\end{document}.
引用
收藏
页码:1259 / 1297
页数:38
相关论文
共 50 条