Invariants for trees of non-archimedean polynomials and skeleta of superelliptic curves

被引:0
|
作者
Paul Alexander Helminck
机构
[1] Durham University,Department of Mathematics
来源
Mathematische Zeitschrift | 2022年 / 301卷
关键词
14G22; 11G30; 14T05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we generalize the j-invariant criterion for the semistable reduction type of an elliptic curve to superelliptic curves X given by yn=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^{n}=f(x)$$\end{document}. We first define a set of tropical invariants for f(x) using symmetrized Plücker coordinates and we show that these invariants determine the tree associated to f(x). This tree then completely determines the reduction type of X for n that are not divisible by the residue characteristic. The conditions on the tropical invariants that distinguish between the different types are given by half-spaces as in the elliptic curve case. These half-spaces arise naturally as the moduli spaces of certain Newton polygon configurations. We give a procedure to write down their equations and we illustrate this by giving the half-spaces for polynomials of degree d≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le {5}$$\end{document}.
引用
收藏
页码:1259 / 1297
页数:38
相关论文
共 50 条
  • [1] Invariants for trees of non-archimedean polynomials and skeleta of superelliptic curves
    Helminck, Paul Alexander
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (02) : 1259 - 1297
  • [2] A Riemann–Hurwitz formula for skeleta in non-Archimedean geometry
    John Welliaveetil
    European Journal of Mathematics, 2020, 6 : 453 - 487
  • [3] Discriminants of polynomials in the Archimedean and non-Archimedean metrics
    Bernik, V.
    Budarina, N.
    O'Donnell, H.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (02) : 265 - 278
  • [4] Discriminants of polynomials in the Archimedean and non-Archimedean metrics
    V. Bernik
    N. Budarina
    H. O’Donnell
    Acta Mathematica Hungarica, 2018, 154 : 265 - 278
  • [5] Trees and non-Archimedean topologies
    Christol, G
    TREES - WORKSHOP IN VERSAILLES, JUNE 14-16, 1995, 1996, 40 : 123 - 131
  • [6] A Riemann-Hurwitz formula for skeleta in non-Archimedean geometry
    Welliaveetil, John
    EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (02) : 453 - 487
  • [7] NON-ARCHIMEDEAN QUANTUM K-INVARIANTS
    Porta, Mauro
    Yueyu, Tony
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2024, 57 (03):
  • [8] Geometric invariants for non-archimedean semialgebraic sets
    Nicaise, Johannes
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 : 389 - 403
  • [9] AFFINE ACTIONS ON NON-ARCHIMEDEAN TREES
    Rourke, Shane O.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (02) : 217 - 253
  • [10] On the structure of non-archimedean analytic curves
    Baker, Matthew
    Payne, Sam
    Rabinoff, Joseph
    TROPICAL AND NON-ARCHIMEDEAN GEOMETRY, 2013, 605 : 93 - +