An interior point method, based on rank-1 updates, for linear programming

被引:0
|
作者
Jos F. Sturm
Shuzhong Zhang
机构
[1] Erasmus University Rotterdam,Econometric Institute
来源
Mathematical Programming | 1998年 / 81卷
关键词
Linear programming; Interior point method; Potential function;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a polynomial time primal—dual potential reduction algorithm for linear programming. The algorithm generates sequencesdk andvk rather than a primal—dual interior point (xk,sk), where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d_i^k = \sqrt {{{x_i^k } \mathord{\left/ {\vphantom {{x_i^k } {s_i^k }}} \right. \kern-\nulldelimiterspace} {s_i^k }}} $$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$v_i^k = \sqrt {x_i^k s_i^k }$$ \end{document} fori = 1, 2,⋯,n. Only one element ofdk is changed in each iteration, so that the work per iteration is bounded by O(mn) using rank-1 updating techniques. The usual primal—dual iteratesxk andsk are not needed explicitly in the algorithm, whereasdk andvk are iterated so that the interior primal—dual solutions can always be recovered by aforementioned relations between (xk, sk) and (dk, vk) with improving primal—dual potential function values. Moreover, no approximation ofdk is needed in the computation of projection directions. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:77 / 87
页数:10
相关论文
共 50 条
  • [41] Newton flow and interior point methods in linear programming
    Dedieu, JP
    Shub, M
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (03): : 827 - 839
  • [42] Interior-point algorithm for linear programming based on a new descent direction
    Billel, Zaoui
    Djamel, Benterki
    Aicha, Kraria
    Hadjer, Raouache
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (05) : 2473 - 2491
  • [43] Rank-1 positive semidefinite matrix-based nonlinear programming formulation for AC OPF
    Ma, Minyue
    Fan, Lingling
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2019, 29 (10)
  • [44] An interior-point method for semidefinite programming
    Helmberg, C
    Rendl, F
    Vanderbei, RJ
    Wolkowicz, H
    SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) : 342 - 361
  • [45] A Faster Interior Point Method for Semidefinite Programming
    Jiang, Haotian
    Kathuria, Tarun
    Lee, Yin Tat
    Padmanabhan, Swati
    Song, Zhao
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 910 - 918
  • [46] A trust region method based on interior point techniques for nonlinear programming
    Byrd, RH
    Gilbert, JC
    Nocedal, J
    MATHEMATICAL PROGRAMMING, 2000, 89 (01) : 149 - 185
  • [47] A trust region method based on interior point techniques for nonlinear programming
    Richard H. Byrd
    Jean Charles Gilbert
    Jorge Nocedal
    Mathematical Programming, 2000, 89 : 149 - 185
  • [48] An Interior Point Method for Semidefinite Programming based on New Kernel Functions
    Peyghami, M. Reza
    MODELLING OF ENGINEERING AND TECHNOLOGICAL PROBLEMS, 2009, 1146 : 441 - 455
  • [49] A new efficient short-step projective interior point method for linear programming
    Bouafia, Mousaab
    Benterki, Djamel
    Yassine, Adnan
    OPERATIONS RESEARCH LETTERS, 2018, 46 (03) : 291 - 294
  • [50] A PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR-PROGRAMMING BASED ON A WEIGHTED BARRIER FUNCTION
    CHENG, ZY
    MITCHELL, JE
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 87 (02) : 301 - 321