An interior point method, based on rank-1 updates, for linear programming

被引:0
|
作者
Jos F. Sturm
Shuzhong Zhang
机构
[1] Erasmus University Rotterdam,Econometric Institute
来源
Mathematical Programming | 1998年 / 81卷
关键词
Linear programming; Interior point method; Potential function;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a polynomial time primal—dual potential reduction algorithm for linear programming. The algorithm generates sequencesdk andvk rather than a primal—dual interior point (xk,sk), where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d_i^k = \sqrt {{{x_i^k } \mathord{\left/ {\vphantom {{x_i^k } {s_i^k }}} \right. \kern-\nulldelimiterspace} {s_i^k }}} $$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$v_i^k = \sqrt {x_i^k s_i^k }$$ \end{document} fori = 1, 2,⋯,n. Only one element ofdk is changed in each iteration, so that the work per iteration is bounded by O(mn) using rank-1 updating techniques. The usual primal—dual iteratesxk andsk are not needed explicitly in the algorithm, whereasdk andvk are iterated so that the interior primal—dual solutions can always be recovered by aforementioned relations between (xk, sk) and (dk, vk) with improving primal—dual potential function values. Moreover, no approximation ofdk is needed in the computation of projection directions. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:77 / 87
页数:10
相关论文
共 50 条
  • [31] A feasible primal-dual interior point method for linear semidefinite programming
    Touil, Imene
    Benterki, Djamel
    Yassine, Adnan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 : 216 - 230
  • [32] On the convergence of an inexact primal-dual interior point method for linear programming
    Baryamureeba, V
    Steihaug, T
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 629 - 637
  • [33] Primal-dual interior-point method for linear programming based on a weighted barrier function
    Cheng, Z.Y.
    Mitchell, J.E.
    Journal of Optimization Theory and Applications, 1995, 87 (02):
  • [34] MKOR: Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates
    Mozaffari, Mohammad
    Li, Sikan
    Zhang, Zhao
    Dehnavi, Maryam Mehri
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [35] Stabilization of Interior-Point Methods for Linear Programming
    Vera V. Kovacevic-Vujcic
    Miroslav D. Asic
    Computational Optimization and Applications, 1999, 14 : 331 - 346
  • [36] PCx: An interior-point code for linear programming
    Czyzyk, J
    Mehrotra, S
    Wagner, M
    Wright, SJ
    OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4): : 397 - 430
  • [38] INTERIOR POINT METHODS FOR LINEAR-PROGRAMMING - PREFACE
    GAY, DM
    KOJIMA, M
    TAPIA, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 152 : 1 - 1
  • [39] Stabilization of interior-point methods for linear programming
    Kovacevic-Vujcic, VV
    Asic, MD
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 14 (03) : 331 - 346
  • [40] LPABO: A program for interior point methods for linear programming
    Park, S
    Kim, WJ
    Seol, T
    Seong, M
    Park, CK
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2000, 17 (01) : 81 - 100