Bézier variant of summation-integral type operators

被引:0
|
作者
Naokant Neha
Ram Deo
机构
[1] Delhi Technological University,Department of Applied Mathematics
[2] University of Delhi,Department of Mathematics, Miranda House
关键词
Inverse Pólya-Eggenberger distribution; Rate of convergence; Modulus of continuity; Bounded variation; 41A25; 41A35;
D O I
暂无
中图分类号
学科分类号
摘要
The motive of this article is to introduce the Bézier variant of a sequence of summation-integral type operators involving inverse Pólya-Eggenberger distribution and Păltănea operators [17]. For these operators, we estimate the approximation behaviour including first and second-order modulus of smoothness. Lastly, we establish the rate of convergence with a class of functions of derivatives of bounded variation.
引用
收藏
页码:889 / 900
页数:11
相关论文
共 50 条
  • [31] Bézier–Bernstein–Durrmeyer type operators
    Arun Kajla
    Tuncer Acar
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [32] Sq-Bernstein-Kantorovich operators and their Bézier variant
    Saeidian, Jamshid
    Nouri, Bahareh
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,
  • [33] Bézier variant of Baskakov-Beta-Stancu operators
    Rani Yadav
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2012, 58 (1) : 217 - 227
  • [34] Some estimations of summation-integral-type operators
    Mishra, Vishnu Narayan
    Yadav, Rishikesh
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (03) : 175 - 191
  • [35] APPROXIMATION PROPERTIES OF CERTAIN SUMMATION INTEGRAL TYPE OPERATORS
    Patel, Prashantkumar
    Mishra, Vishnu Narayan
    DEMONSTRATIO MATHEMATICA, 2015, 48 (01) : 77 - 90
  • [36] A note on mixed summation-integral-type operators
    Gupta M.K.
    Kumar M.
    Singh R.P.
    Ukrainian Mathematical Journal, 2007, 59 (8) : 1258 - 1263
  • [37] BLENDING TYPE APPROXIMATION BY BEZIER-SUMMATION-INTEGRAL TYPE OPERATORS
    Acar, Tuncer
    Kajla, Arun
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2018, 67 (02): : 195 - 208
  • [38] Approximation degree of Durrmeyer–Bézier type operators
    Purshottam N. Agrawal
    Serkan Araci
    Martin Bohner
    Kumari Lipi
    Journal of Inequalities and Applications, 2018
  • [39] Approximation of a kind of new type Bézier operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Journal of Inequalities and Applications, 2015
  • [40] Quantitative estimations of bivariate summation-integral-type operators
    Yadav, Rishikesh
    Meher, Ramakanta
    Mishraa, Vishnu Narayan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7172 - 7191