Bézier variant of summation-integral type operators

被引:0
|
作者
Naokant Neha
Ram Deo
机构
[1] Delhi Technological University,Department of Applied Mathematics
[2] University of Delhi,Department of Mathematics, Miranda House
关键词
Inverse Pólya-Eggenberger distribution; Rate of convergence; Modulus of continuity; Bounded variation; 41A25; 41A35;
D O I
暂无
中图分类号
学科分类号
摘要
The motive of this article is to introduce the Bézier variant of a sequence of summation-integral type operators involving inverse Pólya-Eggenberger distribution and Păltănea operators [17]. For these operators, we estimate the approximation behaviour including first and second-order modulus of smoothness. Lastly, we establish the rate of convergence with a class of functions of derivatives of bounded variation.
引用
收藏
页码:889 / 900
页数:11
相关论文
共 50 条
  • [21] Direct Results for Certain Summation-Integral Type Baskakov–Szász Operators
    Ana Maria Acu
    Vijay Gupta
    Results in Mathematics, 2017, 72 : 1161 - 1180
  • [22] On q-analogue of a complex summation-integral type operators in compact disks
    Agarwal, Ravi P.
    Gupta, Vijay
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012, : 1 - 13
  • [23] Direct Result for a Summation-Integral Type Modification of Szász-Mirakjan Operators
    Vishnu Narayan Mishra
    R.B.Gandhi
    Analysis in Theory and Applications, 2020, 36 (02) : 217 - 224
  • [24] The Bézier variant of Kantorovich type λ-Bernstein operators
    Qing-Bo Cai
    Journal of Inequalities and Applications, 2018
  • [25] Approximation by a novel Mihesan type summation-integral operator
    Bhatnagar, Dhruv
    JOURNAL OF ANALYSIS, 2022, 30 (01): : 331 - 352
  • [26] Approximation by a novel Miheşan type summation-integral operator
    Dhruv Bhatnagar
    The Journal of Analysis, 2022, 30 : 331 - 352
  • [27] Approximation by complex summation-integral type operator in compact disks
    Gupta, Vijay
    Yadav, Rani
    MATHEMATICA SLOVACA, 2013, 63 (05) : 1025 - 1036
  • [28] Bézier variant of modified α-Bernstein operators
    P. N. Agrawal
    Neha Bhardwaj
    Parveen Bawa
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 807 - 827
  • [29] Durrmyer Type Summation Integral Operators
    Kumar, Niraj
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (02): : 185 - 188
  • [30] Bèzier variant of the generalized Baskakov Kantorovich operators
    Goyal M.
    Agrawal P.N.
    Bollettino dell'Unione Matematica Italiana, 2016, 8 (4) : 229 - 238