A unified framework for a posteriori error estimation for the Stokes problem

被引:0
|
作者
Antti Hannukainen
Rolf Stenberg
Martin Vohralík
机构
[1] Aalto University,Department of Mathematics and Systems Analysis
[2] UPMC Univ. Paris 06,Laboratoire Jacques
[3] UMR 7598,Louis Lions
[4] CNRS,Laboratoire Jacques
[5] UMR 7598,Louis Lions
来源
Numerische Mathematik | 2012年 / 122卷
关键词
65N15; 76M12; 76S05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a unified framework for a posteriori error estimation for the Stokes problem is developed. It is based on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[H^1_0(\Omega )]^d$$\end{document}-conforming velocity reconstruction and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{\boldsymbol{H}}(\mathrm{div},\Omega )$$\end{document}-conforming, locally conservative flux (stress) reconstruction. It gives guaranteed, fully computable global upper bounds as well as local lower bounds on the energy error. In order to apply this framework to a given numerical method, two simple conditions need to be checked. We show how to do this for various conforming and conforming stabilized finite element methods, the discontinuous Galerkin method, the Crouzeix–Raviart nonconforming finite element method, the mixed finite element method, and a general class of finite volume methods. The tools developed and used include a new simple equilibration on dual meshes and the solution of local Poisson-type Neumann problems by the mixed finite element method. Numerical experiments illustrate the theoretical developments.
引用
收藏
页码:725 / 769
页数:44
相关论文
共 50 条
  • [41] A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem
    E. Bänsch
    F. Karakatsani
    C. G. Makridakis
    Calcolo, 2018, 55
  • [42] A Posteriori Error Estimator for a Weak Galerkin Finite Element Solution of the Stokes Problem
    Zheng, Xiaobo
    Xie, Xiaoping
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 508 - 529
  • [43] A Posteriori Error Analysis of the Hybrid High-Order Method for the Stokes Problem
    Zhang, Yongchao
    Mei, Liquan
    Wang, Gang
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [44] A posteriori error analysis of an enriched Galerkin method of order one for the Stokes problem
    Girault, Vivette
    Gonzalez, Maria
    Hecht, Frederic
    JOURNAL OF NUMERICAL MATHEMATICS, 2022, 30 (02) : 85 - 108
  • [45] AN A POSTERIORI ERROR ESTIMATION FOR THE DISCRETE DUALITY FINITE VOLUME DISCRETIZATION OF THE STOKES EQUATIONS
    Le, Anh Ha
    Omnes, Pascal
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (03): : 663 - 693
  • [46] An a posteriori error analysis for an augmented discontinuous Galerkin method applied to Stokes problem
    Barrios, Tomas P.
    Bustinza, Rommel
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (05)
  • [47] A Posteriori Error Analysis of the Hybrid High-Order Method for the Stokes Problem
    Yongchao Zhang
    Liquan Mei
    Gang Wang
    Journal of Scientific Computing, 2023, 96
  • [48] An a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problem
    Barrios, Tomas P.
    Bustinza, Rommel
    Garcia, Galina C.
    Gonzalez, Maria
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 357 : 349 - 365
  • [49] A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator
    Huang, Pengzhan
    Zhang, Qiuyu
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (03): : 295 - 304
  • [50] A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem
    Baensch, E.
    Karakatsani, F.
    Makridakis, C. G.
    CALCOLO, 2018, 55 (02)