A unified framework for a posteriori error estimation for the Stokes problem

被引:0
|
作者
Antti Hannukainen
Rolf Stenberg
Martin Vohralík
机构
[1] Aalto University,Department of Mathematics and Systems Analysis
[2] UPMC Univ. Paris 06,Laboratoire Jacques
[3] UMR 7598,Louis Lions
[4] CNRS,Laboratoire Jacques
[5] UMR 7598,Louis Lions
来源
Numerische Mathematik | 2012年 / 122卷
关键词
65N15; 76M12; 76S05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a unified framework for a posteriori error estimation for the Stokes problem is developed. It is based on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[H^1_0(\Omega )]^d$$\end{document}-conforming velocity reconstruction and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{\boldsymbol{H}}(\mathrm{div},\Omega )$$\end{document}-conforming, locally conservative flux (stress) reconstruction. It gives guaranteed, fully computable global upper bounds as well as local lower bounds on the energy error. In order to apply this framework to a given numerical method, two simple conditions need to be checked. We show how to do this for various conforming and conforming stabilized finite element methods, the discontinuous Galerkin method, the Crouzeix–Raviart nonconforming finite element method, the mixed finite element method, and a general class of finite volume methods. The tools developed and used include a new simple equilibration on dual meshes and the solution of local Poisson-type Neumann problems by the mixed finite element method. Numerical experiments illustrate the theoretical developments.
引用
收藏
页码:725 / 769
页数:44
相关论文
共 50 条
  • [21] UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS
    Wang, Junping
    Wang, Yanqiu
    Ye, Xiu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (03) : 551 - 570
  • [22] Energy Norm shape A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem
    Houston Paul
    Dominik Schötzau
    Thomas P. Wihler
    Journal of Scientific Computing, 2005, 22-23 : 347 - 370
  • [23] On a posteriori error estimates for the stationary Navier-Stokes problem
    Repin S.
    Journal of Mathematical Sciences, 2008, 150 (1) : 1885 - 1889
  • [24] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [25] Posteriori error estimation for stabilized mixed approximations of the Stokes equations
    Oxford Univ. Computing Laboratory, Wolfson Building, Oxford OX1 3QD, United Kingdom
    不详
    Siam J. Sci. Comput., 4 (1321-1336):
  • [26] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    Journal of Scientific Computing, 2020, 84
  • [27] A POSTERIORI ERROR ESTIMATION FOR STABILIZED MIXED APPROXIMATIONS OF THE STOKES EQUATIONS
    Kay, David
    Silvester, David
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (04): : 1321 - 1336
  • [28] A POSTERIORI ERROR ESTIMATION FOR THE p-CURL PROBLEM
    Wan, Andy T. S.
    Laforest, Marc
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 460 - 491
  • [29] AN A POSTERIORI ERROR ESTIMATE FOR THE STOKES-BRINKMAN PROBLEM IN A POLYGONAL DOMAIN
    Burda, Pavel
    Hasal, Martin
    Programs and Algorithms of Numerical Mathematics 17, 2015, : 32 - 40
  • [30] A posteriori error analysis for Navier–Stokes equations coupled with Darcy problem
    M. L. Hadji
    A. Assala
    F. Z. Nouri
    Calcolo, 2015, 52 : 559 - 576