CESAR: Cryogenic Electronics for Space Applications

被引:0
|
作者
V. Revéret
X. de la Broïse
C. Fermon
M. Pannetier-Lecoeur
C. Pigot
L. Rodriguez
J.-L. Sauvageot
Y. Jin
S. Marnieros
D. Bouchier
J. Putzeys
Y. Long
C. Kiss
S. Kiraly
M. Barbera
U. Lo Cicero
P. Brown
C. Carr
B. Whiteside
机构
[1] Laboratoire AIM,Dipartimento di Fisica e Chimica
[2] Paris-Saclay,Space & Atmospheric Physics Group, The Blackett Laboratory
[3] CEA/IRFU/SAp,undefined
[4] CNRS,undefined
[5] Université Paris Diderot,undefined
[6] CEA,undefined
[7] IRFU,undefined
[8] SEDI,undefined
[9] CEA,undefined
[10] IRAMIS/SPEC,undefined
[11] CNRS,undefined
[12] LPN,undefined
[13] CNRS,undefined
[14] CSNSM,undefined
[15] CNRS,undefined
[16] IEF,undefined
[17] IMEC,undefined
[18] Konkoly Observatory,undefined
[19] Università degli Studi di Palermo,undefined
[20] INAF - Osservatorio Astronomico di Palermo G.S. Vaiana,undefined
[21] Imperial College London,undefined
来源
Journal of Low Temperature Physics | 2014年 / 176卷
关键词
Cryogenic electronics; High impedance detectors; X-ray microcalorimeters; Far-infrared bolometers;
D O I
暂无
中图分类号
学科分类号
摘要
Ultra-low temperature sensors provide unprecedented performances in X-ray and far infrared astronomy by taking advantage of physical properties of matter close to absolute zero. CESAR is an FP7 funded project started in December 2010, that gathers six European laboratories around the development of high performances cryogenic electronics. The goal of the project is to provide far-IR, X-ray and magnetic sensors with signal-processing capabilities at the heart of the detectors. We present the major steps that constitute the CESAR work, and the main results achieved so far.
引用
收藏
页码:446 / 452
页数:6
相关论文
共 50 条
  • [31] MECHANICAL COOLERS - AN OPTION FOR SPACE CRYOGENIC COOLING APPLICATIONS
    JEWELL, C
    JONES, BG
    ESA BULLETIN-EUROPEAN SPACE AGENCY, 1990, (62) : 79 - 85
  • [32] Characterisation of operational amplifiers at cryogenic temperatures for space applications
    Johnson, Jared
    Daly, Michael G.
    Hiemstra, David M.
    INTERNATIONAL JOURNAL OF SPACE SCIENCE AND ENGINEERING, 2013, 1 (03) : 311 - 327
  • [33] SPACE APPLICATIONS OF SUPERCONDUCTIVITY .4. DIGITAL ELECTRONICS
    HARRIS, RE
    CRYOGENICS, 1980, 20 (04) : 171 - 181
  • [35] Cryogenic Electronics and Materials for the Quantum
    Zota, Cezar
    2021 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATIONS (VLSI-TSA), 2021,
  • [36] Cryogenic Electronics Development for CUPID
    Huang, R. G.
    Mei, Y.
    Kolomensky, Yu G.
    Grace, C.
    16TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2019), 2020, 1468
  • [37] A cryogenic measurement setup for microelectromechanical systems used in space applications
    Chuang, WH
    Luger, T
    Ghodssi, R
    Fettig, RK
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (04):
  • [38] Cryogenic nano-positioner development and test for space applications
    Streetman, S
    Kingsbury, L
    IR SPACE TELESCOPES AND INSTRUMENTS, PTS 1 AND 2, 2003, 4850 : 274 - 285
  • [39] Cryogenic magnetostrictive transducers and devices for commercial, military and space applications
    Weisensel, GN
    McMasters, OD
    Chave, RG
    INDUSTRIAL AND COMMERCIAL APPLICATIONS OF SMART STRUCTURES TECHNOLOGIES - SMART STRUCTURES AND MATERIALS 1998, 1998, 3326 : 459 - 470
  • [40] Screening SOI substrates for radiation resistant space electronics applications
    Liu, ST
    Yue, J
    Schrankler, J
    1997 IEEE INTERNATIONAL SOI CONFERENCE PROCEEDINGS, 1996, : 7 - 9