CESAR: Cryogenic Electronics for Space Applications

被引:0
|
作者
V. Revéret
X. de la Broïse
C. Fermon
M. Pannetier-Lecoeur
C. Pigot
L. Rodriguez
J.-L. Sauvageot
Y. Jin
S. Marnieros
D. Bouchier
J. Putzeys
Y. Long
C. Kiss
S. Kiraly
M. Barbera
U. Lo Cicero
P. Brown
C. Carr
B. Whiteside
机构
[1] Laboratoire AIM,Dipartimento di Fisica e Chimica
[2] Paris-Saclay,Space & Atmospheric Physics Group, The Blackett Laboratory
[3] CEA/IRFU/SAp,undefined
[4] CNRS,undefined
[5] Université Paris Diderot,undefined
[6] CEA,undefined
[7] IRFU,undefined
[8] SEDI,undefined
[9] CEA,undefined
[10] IRAMIS/SPEC,undefined
[11] CNRS,undefined
[12] LPN,undefined
[13] CNRS,undefined
[14] CSNSM,undefined
[15] CNRS,undefined
[16] IEF,undefined
[17] IMEC,undefined
[18] Konkoly Observatory,undefined
[19] Università degli Studi di Palermo,undefined
[20] INAF - Osservatorio Astronomico di Palermo G.S. Vaiana,undefined
[21] Imperial College London,undefined
来源
Journal of Low Temperature Physics | 2014年 / 176卷
关键词
Cryogenic electronics; High impedance detectors; X-ray microcalorimeters; Far-infrared bolometers;
D O I
暂无
中图分类号
学科分类号
摘要
Ultra-low temperature sensors provide unprecedented performances in X-ray and far infrared astronomy by taking advantage of physical properties of matter close to absolute zero. CESAR is an FP7 funded project started in December 2010, that gathers six European laboratories around the development of high performances cryogenic electronics. The goal of the project is to provide far-IR, X-ray and magnetic sensors with signal-processing capabilities at the heart of the detectors. We present the major steps that constitute the CESAR work, and the main results achieved so far.
引用
收藏
页码:446 / 452
页数:6
相关论文
共 50 条
  • [21] Evaluation of capacitors at cryogenic temperatures for space applications
    Patterson, RL
    Hammoud, A
    Gerber, SS
    CONFERENCE RECORD OF THE 1998 IEEE INTERNATIONAL SYMPOSIUM ON ELECTRICAL INSULATION, VOLS 1 AND 2, 1998, : 468 - 471
  • [22] Electronic components and systems for cryogenic space applications
    Patterson, RL
    Hammoud, A
    Dickman, JE
    Gerber, S
    Elbuluk, ME
    Overton, E
    ADVANCES IN CRYOGENIC ENGINEERING, VOL 47, PTS A AND B, 2002, 613 : 1585 - 1591
  • [23] Cryogenic semiconductor electronics
    Camin, DV
    Pessina, G
    Previtali, E
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 : 52 - 56
  • [24] The development of lightweight electronics enclosures for space applications
    Fenske, MT
    Barth, JL
    Didion, JR
    Mulé, P
    SAMPE JOURNAL, 1999, 35 (05) : 25 - 34
  • [25] Digital electronics for inertial MEMS and space applications
    Guerard, Jean
    Delahaye, Leopold
    Levy, Raphael
    2018 SYMPOSIUM ON DESIGN, TEST, INTEGRATION & PACKAGING OF MEMS AND MOEMS (DTIP), 2018,
  • [26] First potential of nanocomposites for space electronics applications
    Kiryukhina, K.
    Courtade, F.
    Desmarres, J. -M.
    Pressecq, F.
    Vendier, O.
    Monfraix, P.
    2016 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC), 2016,
  • [27] Adaptive and evolvable analog electronics for space applications
    Stoica, Adrian
    Keymeulen, Didier
    Zebulum, Ricardo
    Mojarradi, Mohammad
    Katkoori, Srinivas
    Daud, Taher
    EVOLVABLE SYSTEMS: FROM BIOLOGY TO HARDWARE, PROCEEDINGS, 2007, 4684 : 379 - +
  • [28] Technology of cryogenic electronics
    Kirschman, RK
    VACUUM, 1998, 51 (02) : 321 - 321
  • [29] HYBRID CRYOGENIC COOLER FOR SPACE-FLIGHT APPLICATIONS
    ANNABLE, RV
    APPLIED OPTICS, 1978, 17 (17): : 2739 - 2746
  • [30] Design of Cryogenic LNAs for High Linearity in Space Applications
    Caglar, Alican
    Yelten, Mustafa Berke
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (12) : 4619 - 4627