Existence and nonexistence of positive solutions to a fractional parabolic problem with singular weight at the boundary

被引:0
|
作者
Boumediene Abdellaoui
Kheireddine Biroud
El-Haj Laamri
机构
[1] Université Abou Bakr Belkaïd,Laboratoire d’Analyse Non Linéaire et Mathématiques Appliquées, Département de Mathématiques
[2] Ecole Supŕieure de Management,Institut Elie Cartan
[3] Université de Lorraine,undefined
来源
关键词
Fractional Nonlinear parabolic problems; Singular Hardy potential; Complete blow-up results; 35B05; 35K15; 35B40; 35K55; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem (P)ut+(-Δ)su=λupδ2s(x)inΩT≡Ω×(0,T),u(x,0)=u0(x)inΩ,u=0in(IRN\Ω)×(0,T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (P)\left\{ \begin{array}{llll} u_t+(-\Delta )^{s} u &{}=&{} \lambda \dfrac{u^p}{\delta ^{2s}(x)} &{} \quad \text { in }\Omega _{T}\equiv \Omega \times (0,T) , \\ u(x,0)&{}=&{}u_0(x) &{} \quad \text { in }\Omega , \\ u&{}=&{}0 &{}\quad \text { in } ({I\!\!R}^N\setminus \Omega ) \times (0,T), \end{array}\right. \end{aligned}$$\end{document}where Ω⊂IRN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {I\!\!R}^N$$\end{document} is a bounded regular domain (in the sense that ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document} is of class C0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{0,1}$$\end{document}), δ(x)=dist(x,∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (x)=\text {dist}(x,\partial \Omega )$$\end{document}, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}. The purpose of this work is twofold. First We analyze the interplay between the parameters s, p and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} in order to prove the existence or the nonexistence of solution to problem (P) in a suitable sense. This extends previous similar results obtained in the local case s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}. Second We will especially point out the differences between the local and nonlocal cases.
引用
收藏
页码:1227 / 1261
页数:34
相关论文
共 50 条
  • [21] Existence of a unique positive solution for a singular fractional boundary value problem
    Karimov, E. T.
    Sadarangani, K.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (01) : 57 - 64
  • [22] Existence and multiplicity of positive solutions for singular fractional boundary value problems
    Bai, Zhanbing
    Sun, Weichen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (09) : 1369 - 1381
  • [23] Positive solutions for a singular fractional nonlocal boundary value problem
    Zhang, Luyao
    Sun, Zhongmin
    Hao, Xinan
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [24] Multiple Positive Solutions Of A Singular Fractional Boundary Value Problem
    Xu, Jiafa
    Yang, Zhilin
    APPLIED MATHEMATICS E-NOTES, 2010, 10 : 259 - 267
  • [25] Criteria for existence and nonexistence of positive solutions to a discrete periodic boundary value problem
    Atici, FM
    Cabada, A
    Otero-Espinar, V
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (09) : 765 - 775
  • [26] Nonexistence of solutions to fractional parabolic problem with general nonlinearities
    Zhang, Lihong
    Liu, Yuchuan
    Nieto, Juan J.
    Wang, Guotao
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 551 - 562
  • [27] Nonexistence of solutions to fractional parabolic problem with general nonlinearities
    Lihong Zhang
    Yuchuan Liu
    Juan J. Nieto
    Guotao Wang
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 551 - 562
  • [28] Existence of Positive Solutions for a Functional Fractional Boundary Value Problem
    Bai, Chuanzhi
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [29] On the Existence of Positive Solutions for a Boundary Valued Problem of Fractional Order
    El-Shahed, Moustafa
    THAI JOURNAL OF MATHEMATICS, 2007, 5 (01): : 143 - 150
  • [30] Existence of positive solutions for a discrete fractional boundary value problem
    Jinhua Wang
    Hongjun Xiang
    Fulai Chen
    Advances in Difference Equations, 2014