Nonexistence of solutions to fractional parabolic problem with general nonlinearities

被引:0
|
作者
Lihong Zhang
Yuchuan Liu
Juan J. Nieto
Guotao Wang
机构
[1] Shanxi Normal University,School of Mathematics and Computer Science
[2] Universidade de Santiago de Compostela,CITMAga, Departamento de Estatistica, Análise Matemática e Optimización
关键词
Fractional parabolic equation; General nonlinearity; Tempered fractional Laplacian; Monotonicity; 35R11; 35K91;
D O I
暂无
中图分类号
学科分类号
摘要
In this content, we investigate a class of fractional parabolic equation with general nonlinearities ∂z(x,t)∂t-(Δ+λ)β2z(x,t)=a(x1)f(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial z(x,t)}{\partial t}-(\Delta +\lambda )^{\frac{\beta }{2}}z(x,t)=a(x_{1})f(z), \end{aligned}$$\end{document}where a and f are nondecreasing functions. We first prove that the monotone increasing property of the positive solutions in x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{1}$$\end{document} direction. Based on this, nonexistence of the solutions are obtained by using a contradiction argument. We believe these new ideas we introduced will be applied to solve more fractional parabolic problems.
引用
收藏
页码:551 / 562
页数:11
相关论文
共 50 条
  • [1] Nonexistence of solutions to fractional parabolic problem with general nonlinearities
    Zhang, Lihong
    Liu, Yuchuan
    Nieto, Juan J.
    Wang, Guotao
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 551 - 562
  • [2] Nonexistence of solutions for indefinite fractional parabolic equations
    Chen, Wenxiong
    Wu, Leyun
    Wang, Pengyan
    ADVANCES IN MATHEMATICS, 2021, 392
  • [3] Existence and nonexistence of positive solutions to a fractional parabolic problem with singular weight at the boundary
    Abdellaoui, Boumediene
    Biroud, Kheireddine
    Laamri, El-Haj
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1227 - 1261
  • [4] Existence and nonexistence of positive solutions to a fractional parabolic problem with singular weight at the boundary
    Boumediene Abdellaoui
    Kheireddine Biroud
    El-Haj Laamri
    Journal of Evolution Equations, 2021, 21 : 1227 - 1261
  • [5] NONEXISTENCE OF SOLUTIONS FOR TEMPERED FRACTIONAL PARABOLIC EQUATIONS
    Huang, Honghong
    Zhong, Yansheng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (02) : 233 - 252
  • [6] NONEXISTENCE OF SOLUTIONS OF SOME INEQUALITIES WITH GRADIENT NONLINEARITIES AND FRACTIONAL LAPLACIAN
    Galakhov, Evgeny
    Salieva, Olga
    PROCEEDINGS OF EQUADIFF 2017 CONFERENCE, 2017, : 157 - 162
  • [7] Nonexistence of global solutions for a fractional differential problem
    Kassim, M. D.
    Furati, K. M.
    Tatar, N. -E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 314 : 61 - 68
  • [8] Nonexistence of solutions to a fractional differential boundary value problem
    Al-Qurashi, Maysaa
    Ragoub, Lakhdar
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2233 - 2243
  • [9] NONEXISTENCE OF GLOBAL SOLUTIONS TO A FRACTIONAL NONLINEAR ULTRA-PARABOLIC SYSTEM
    Abd Elhakim, Lamairia
    Kamel, Haouam
    Belgacem, Rebiai
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 748 - 755
  • [10] On nonexistence and nonuniqueness of solutions of the Cauchy problem for a semilinear parabolic equation
    Ben-Artzi, M
    Souplet, P
    Weissler, FB
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05): : 371 - 376