Domination numbers of undirected toroidal mesh

被引:0
|
作者
Xin Xie
Jun Ming Xu
机构
[1] Huangshan University,Department of Mathematics
[2] University of Science and Technology of China,Department of Mathematics
关键词
Undirected toroidal mesh; reliability; -diameter; domination number; 05C40; 68M10; 68M15; 68R10;
D O I
暂无
中图分类号
学科分类号
摘要
The (d,m)-domination number γd,m is a new measure to characterize the reliability of resources-sharing in fault tolerant networks, in some sense, which can more accurately characterize the reliability of networks than the m-diameter does. In this paper, we study the (d, 4)-domination numbers of undirected toroidal mesh \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{d_1 } \times C_{d_2 }$$\end{document} for some special values of d, obtain that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{d,4} \left( {C_{d_1 } \times C_3 } \right) = 2$$\end{document} if and only if d4(G) − e1 ≤ d < d4(G) for d1 ≥ 5, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{d,4} \left( {C_{d_1 } \times C_4 } \right) = 2$$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_4 \left( G \right) - \left( {2e_1 - \left\lfloor {\tfrac{{d_1 + e_1 }} {2}} \right\rfloor } \right) \leqslant d < d_4 \left( G \right)$$\end{document} for d1 ≥ 24 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{d,4} \left( {C_{d_1 } \times C_{d_2 } } \right) = 2$$\end{document} if d4(G) − (e1 − 2) ≤ d < d4(G) for d1 = d2 ≥ 14.
引用
收藏
页码:453 / 462
页数:9
相关论文
共 50 条
  • [41] Mesh theory for toroidal drive
    Xu, LZ
    Huang, Z
    Yang, YL
    JOURNAL OF MECHANICAL DESIGN, 2004, 126 (03) : 551 - 557
  • [42] DIAGONAL AND TOROIDAL MESH NETWORKS
    TANG, KW
    PADUBIDRI, SA
    IEEE TRANSACTIONS ON COMPUTERS, 1994, 43 (07) : 815 - 826
  • [43] Domination subdivision numbers of trees
    Aram, H.
    Sheikholeslami, S. M.
    Favaron, O.
    DISCRETE MATHEMATICS, 2009, 309 (04) : 622 - 628
  • [44] On domination and reinforcement numbers in trees
    Blair, Jean R. S.
    Goddard, Wayne
    Hedetniemi, Stephen T.
    Horton, Steve
    Jones, Patrick
    Kubicki, Grzegorz
    DISCRETE MATHEMATICS, 2008, 308 (07) : 1165 - 1175
  • [45] Domination numbers of planar graphs
    MacGillivray, G
    Seyffarth, K
    JOURNAL OF GRAPH THEORY, 1996, 22 (03) : 213 - 229
  • [46] On rainbow domination numbers of graphs
    Shao, Zehui
    Liang, Meilian
    Yin, Chuang
    Xu, Xiaodong
    Pavlic, Polona
    Zerovnik, Janez
    INFORMATION SCIENCES, 2014, 254 : 225 - 234
  • [47] Global Domination and Packing Numbers
    Dutton, Ronald D.
    ARS COMBINATORIA, 2011, 101 : 489 - 501
  • [48] On the domination subdivision numbers of trees
    Sharada, B.
    Soner, Nandappa
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 46 : 233 - 239
  • [49] Domination subdivision numbers in graphs
    Favaron, O
    Haynes, TW
    Hedetniemi, ST
    UTILITAS MATHEMATICA, 2004, 66 : 195 - 209
  • [50] On edge domination numbers of graphs
    Xu, BG
    DISCRETE MATHEMATICS, 2005, 294 (03) : 311 - 316