Domination numbers of undirected toroidal mesh

被引:0
|
作者
Xin Xie
Jun Ming Xu
机构
[1] Huangshan University,Department of Mathematics
[2] University of Science and Technology of China,Department of Mathematics
关键词
Undirected toroidal mesh; reliability; -diameter; domination number; 05C40; 68M10; 68M15; 68R10;
D O I
暂无
中图分类号
学科分类号
摘要
The (d,m)-domination number γd,m is a new measure to characterize the reliability of resources-sharing in fault tolerant networks, in some sense, which can more accurately characterize the reliability of networks than the m-diameter does. In this paper, we study the (d, 4)-domination numbers of undirected toroidal mesh \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{d_1 } \times C_{d_2 }$$\end{document} for some special values of d, obtain that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{d,4} \left( {C_{d_1 } \times C_3 } \right) = 2$$\end{document} if and only if d4(G) − e1 ≤ d < d4(G) for d1 ≥ 5, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{d,4} \left( {C_{d_1 } \times C_4 } \right) = 2$$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_4 \left( G \right) - \left( {2e_1 - \left\lfloor {\tfrac{{d_1 + e_1 }} {2}} \right\rfloor } \right) \leqslant d < d_4 \left( G \right)$$\end{document} for d1 ≥ 24 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{d,4} \left( {C_{d_1 } \times C_{d_2 } } \right) = 2$$\end{document} if d4(G) − (e1 − 2) ≤ d < d4(G) for d1 = d2 ≥ 14.
引用
收藏
页码:453 / 462
页数:9
相关论文
共 50 条
  • [21] Domination Number of Toroidal Grid Digraphs
    Shaheen, Ramy S.
    UTILITAS MATHEMATICA, 2009, 78 : 175 - 184
  • [22] Trees with Equal Domination and Restrained Domination Numbers
    Peter Dankelmann
    Johannes H. Hattingh
    Michael A. Henning
    Henda C. Swart
    Journal of Global Optimization, 2006, 34 : 597 - 607
  • [23] On graphs with equal domination and connected domination numbers
    Arumugam, S
    Joseph, JP
    DISCRETE MATHEMATICS, 1999, 206 (1-3) : 45 - 49
  • [24] Total domination and total domination subdivision numbers
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 38 : 229 - 235
  • [25] ON GRAPHS WITH EQUAL DOMINATION AND INDEPENDENT DOMINATION NUMBERS
    TOPP, J
    VOLKMANN, L
    DISCRETE MATHEMATICS, 1991, 96 (01) : 75 - 80
  • [26] On the p-domination, the total domination and the connected domination numbers of graphs
    Chellali, Mustapha
    Favaron, Odile
    Hansberg, Adriana
    Volkmann, Lutz
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 73 : 65 - 75
  • [27] Perfectly relating the domination, total domination, and paired domination numbers of a graph
    Alvarado, Jose D.
    Dantas, Simone
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1424 - 1431
  • [28] Characterization of graphs with equal domination and connected domination numbers
    Chen, XG
    Sun, L
    Xing, HM
    DISCRETE MATHEMATICS, 2004, 289 (1-3) : 129 - 135
  • [29] Trees with equal average domination and independent domination numbers
    Henning, MA
    ARS COMBINATORIA, 2004, 71 : 305 - 318
  • [30] On the out-domination and in-domination numbers of a digraph
    Chartrand, G
    Harary, F
    Yue, BQ
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 179 - 183