The (d,m)-domination number γd,m is a new measure to characterize the reliability of resources-sharing in fault tolerant networks, in some sense, which can more accurately characterize the reliability of networks than the m-diameter does. In this paper, we study the (d, 4)-domination numbers of undirected toroidal mesh \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_{d_1 } \times C_{d_2 }$$\end{document} for some special values of d, obtain that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma _{d,4} \left( {C_{d_1 } \times C_3 } \right) = 2$$\end{document} if and only if d4(G) − e1 ≤ d < d4(G) for d1 ≥ 5, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma _{d,4} \left( {C_{d_1 } \times C_4 } \right) = 2$$\end{document} if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_4 \left( G \right) - \left( {2e_1 - \left\lfloor {\tfrac{{d_1 + e_1 }}
{2}} \right\rfloor } \right) \leqslant d < d_4 \left( G \right)$$\end{document} for d1 ≥ 24 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma _{d,4} \left( {C_{d_1 } \times C_{d_2 } } \right) = 2$$\end{document} if d4(G) − (e1 − 2) ≤ d < d4(G) for d1 = d2 ≥ 14.