On Invariant Subspace In Quantum Control Systems and Some Concepts of Integrable Quantum Systems

被引:0
|
作者
Andrzej Jamiołkowski
Takeo Kamizawa
Grzegorz Pastuszak
机构
[1] Nicolaus Copernicus University,Faculty of Physics, Astronomy and Informatics
[2] Center for Theoretical Physics of the Polish Academy of Sciences,undefined
关键词
Integrable system; Quasi-diagonalisation; Morris-shore transformation; Circulant matrices; Brownian matrices;
D O I
暂无
中图分类号
学科分类号
摘要
Trajectories of some dynamical systems can be analysed by algebraic methods. In this paper we discuss certain applications of the so-called Shemesh criterion and its generalisations to analysis of properties of quantum control systems. In particular, some Hamiltonians with non-degenerated spectrum are considered, and also the case of a Hamiltonian with m1,...,mN degeneracies, where ∑i=1Nmi=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum }^{N}_{i=1}m_{i}=n$\end{document}, is discussed.
引用
收藏
页码:2662 / 2674
页数:12
相关论文
共 50 条
  • [1] On Invariant Subspace in Quantum Control Systems and Some Concepts of Integrable Quantum Systems
    Jamiolkowski, Andrzej
    Kamizawa, Takeo
    Pastuszak, Grzegorz
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (08) : 2662 - 2674
  • [2] Some integrable systems in nonlinear quantum optics
    Horowski, M
    Odzijewicz, A
    Tereszkiewicz, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (02) : 480 - 506
  • [3] QUANTUM INTEGRABLE SYSTEMS
    WADATI, M
    NAGAO, T
    HIKAMI, K
    PHYSICA D, 1993, 68 (01): : 162 - 168
  • [4] QUANTUM INTEGRABLE SYSTEMS
    SEMENOVTIANSHANSKY, M
    ASTERISQUE, 1995, (227) : 365 - 387
  • [5] Quantum affine algebras and integrable quantum systems
    Chari, V
    Pressley, A
    QUANTUM FIELDS AND QUANTUM SPACE TIME, 1997, 364 : 245 - 263
  • [6] Quantum geometry and quantum mechanics of integrable systems
    Karasev, M. V.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (01) : 81 - 92
  • [7] Quantum geometry and quantum mechanics of integrable systems
    M. V. Karasev
    Russian Journal of Mathematical Physics, 2009, 16 : 81 - 92
  • [8] Integrable quantum Stackel systems
    Blaszak, Maciej
    Domanski, Ziemowit
    Sergyeyev, Artur
    Szablikowski, Blazej M.
    PHYSICS LETTERS A, 2013, 377 (38) : 2564 - 2572
  • [9] Integrable Systems and Quantum Deformations
    Koroteev, Peter
    Beisert, Niklas
    INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2009, 1182 : 513 - +
  • [10] Quantum Monodromy in Integrable Systems
    San Vũ Ngoc
    Communications in Mathematical Physics, 1999, 203 : 465 - 479