On Invariant Subspace in Quantum Control Systems and Some Concepts of Integrable Quantum Systems

被引:9
|
作者
Jamiolkowski, Andrzej [1 ]
Kamizawa, Takeo [1 ]
Pastuszak, Grzegorz [2 ]
机构
[1] Nicolaus Copernicus Univ, Fac Phys Astron & Informat, Torun, Poland
[2] Polish Acad Sci, Ctr Theoret Phys, Warsaw, Poland
关键词
Integrable system; Quasi-diagonalisation; Morris-shore transformation; Circulant matrices; Brownian matrices;
D O I
10.1007/s10773-014-2498-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Trajectories of some dynamical systems can be analysed by algebraic methods. In this paper we discuss certain applications of the so-called Shemesh criterion and its generalisations to analysis of properties of quantum control systems. In particular, some Hamiltonians with non-degenerated spectrum are considered, and also the case of a Hamiltonian with m (1),...,m (N) degeneracies, where Sigma(N)(i=1) m(i) = n, is discussed.
引用
收藏
页码:2662 / 2674
页数:13
相关论文
共 50 条
  • [1] On Invariant Subspace In Quantum Control Systems and Some Concepts of Integrable Quantum Systems
    Andrzej Jamiołkowski
    Takeo Kamizawa
    Grzegorz Pastuszak
    International Journal of Theoretical Physics, 2015, 54 : 2662 - 2674
  • [2] Some integrable systems in nonlinear quantum optics
    Horowski, M
    Odzijewicz, A
    Tereszkiewicz, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (02) : 480 - 506
  • [3] QUANTUM INTEGRABLE SYSTEMS
    WADATI, M
    NAGAO, T
    HIKAMI, K
    PHYSICA D, 1993, 68 (01): : 162 - 168
  • [4] QUANTUM INTEGRABLE SYSTEMS
    SEMENOVTIANSHANSKY, M
    ASTERISQUE, 1995, (227) : 365 - 387
  • [5] Quantum affine algebras and integrable quantum systems
    Chari, V
    Pressley, A
    QUANTUM FIELDS AND QUANTUM SPACE TIME, 1997, 364 : 245 - 263
  • [6] Quantum geometry and quantum mechanics of integrable systems
    Karasev, M. V.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (01) : 81 - 92
  • [7] Quantum geometry and quantum mechanics of integrable systems
    M. V. Karasev
    Russian Journal of Mathematical Physics, 2009, 16 : 81 - 92
  • [8] Integrable quantum Stackel systems
    Blaszak, Maciej
    Domanski, Ziemowit
    Sergyeyev, Artur
    Szablikowski, Blazej M.
    PHYSICS LETTERS A, 2013, 377 (38) : 2564 - 2572
  • [9] Integrable Systems and Quantum Deformations
    Koroteev, Peter
    Beisert, Niklas
    INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2009, 1182 : 513 - +
  • [10] Quantum Monodromy in Integrable Systems
    San Vũ Ngoc
    Communications in Mathematical Physics, 1999, 203 : 465 - 479