On Invariant Subspace In Quantum Control Systems and Some Concepts of Integrable Quantum Systems

被引:0
|
作者
Andrzej Jamiołkowski
Takeo Kamizawa
Grzegorz Pastuszak
机构
[1] Nicolaus Copernicus University,Faculty of Physics, Astronomy and Informatics
[2] Center for Theoretical Physics of the Polish Academy of Sciences,undefined
关键词
Integrable system; Quasi-diagonalisation; Morris-shore transformation; Circulant matrices; Brownian matrices;
D O I
暂无
中图分类号
学科分类号
摘要
Trajectories of some dynamical systems can be analysed by algebraic methods. In this paper we discuss certain applications of the so-called Shemesh criterion and its generalisations to analysis of properties of quantum control systems. In particular, some Hamiltonians with non-degenerated spectrum are considered, and also the case of a Hamiltonian with m1,...,mN degeneracies, where ∑i=1Nmi=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum }^{N}_{i=1}m_{i}=n$\end{document}, is discussed.
引用
收藏
页码:2662 / 2674
页数:12
相关论文
共 50 条
  • [31] Robust control of quantum systems by quantum systems
    Konrad, Thomas
    Rouillard, Amy
    Kastner, Michael
    Uys, Hermann
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [32] ON SOME INTEGRABLE ONE-DIMENSIONAL QUANTUM-MECHANICAL SYSTEMS
    LORENTE, M
    PHYSICS LETTERS B, 1989, 232 (03) : 345 - 350
  • [33] SOLUTION OF SOME INTEGRABLE ONE-DIMENSIONAL QUANTUM-SYSTEMS
    SUTHERLAND, B
    SHASTRY, BS
    PHYSICAL REVIEW LETTERS, 1993, 71 (01) : 5 - 8
  • [34] Quantum systems and quantum control
    Xiong, Hejin
    Chen, Mianyun
    Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering), 2002, 26 (04):
  • [35] Quantum concepts and complex systems
    Brändas, EJ
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 98 (02) : 78 - 86
  • [36] Quantum geometry and quantum mechanics of integrable systems. II
    Karasev, M. V.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2010, 17 (02) : 207 - 217
  • [37] Quantum coherent transform of integrable Hamiltonian systems and quantum computing
    Blackmore, D
    Taneri, U
    Prykarpatsky, A
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XVI, PROCEEDINGS: COMPUTER SCIENCE III, 2002, : 105 - 110
  • [38] Quantum geometry and quantum mechanics of integrable systems. II
    M. V. Karasev
    Russian Journal of Mathematical Physics, 2010, 17 : 207 - 217
  • [39] Control of some quantum systems - Role of phases
    Ramakrishna, V
    Ober, RJ
    Rabitz, H
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 1417 - 1420
  • [40] Some Mathematical Problems of Control of Quantum Systems
    Pechen’ A.N.
    Journal of Mathematical Sciences, 2019, 241 (2) : 185 - 190