Asymptotic Behavior for High Moments of the Fractional Heat Equation with Fractional Noise

被引:0
|
作者
Litan Yan
Xianye Yu
机构
[1] Donghua University,Department of Mathematics, College of Science
[2] Zhejiang Gongshang University,Department of Statistics and Mathematics
来源
关键词
Fractional heat equation; Fractional Brownian sheet; Asymptotic behavior; 60H15; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the large time behavior of the solution to the fractional heat equation ∂u∂t(t,x)=-(-Δ)β/2u(t,x)+u(t,x)∂d+1W∂t∂x1⋯∂xd,t>0,x∈Rd,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial u}{\partial t}(t,x)=-(-\Delta )^{\beta /2}u(t,x)+u(t,x)\frac{\partial ^{d+1} W}{\partial t\partial x_1\cdots \partial x_d},\quad t>0,\quad x\in \mathbb {R}^d, \end{aligned}$$\end{document}where β∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in (0,2)$$\end{document} and the noise W(t, x) is a fractional Brownian sheet with indexes H0,H1,…,Hd∈(12,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0, H_1,\ldots ,H_d\in (\frac{1}{2},1)$$\end{document}. By using large deviation techniques and variational method, we find a constant M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_1$$\end{document} such that for any integer p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document} and α0β+α<β,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _0\beta +\alpha <\beta ,$$\end{document}limt→∞t-2β-βα0-αβ-αlogEu(t,x)p=p2β-αβ-ααH2ββ-αM1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{t\rightarrow \infty }t^{-\frac{2\beta -\beta \alpha _0-\alpha }{\beta -\alpha }} \log Eu(t,x)^p=p^{\frac{2\beta -\alpha }{\beta -\alpha }}\left( \frac{\alpha _H}{2} \right) ^{\frac{\beta }{\beta -\alpha }}M_1, \end{aligned}$$\end{document}where α0=2-2H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _0=2-2H_0$$\end{document}, α=∑j=1d(2-2Hj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\sum \nolimits _{j=1}^d(2-2H_j)$$\end{document} and αH=∏i=0dHi(2Hi-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _H=\prod \nolimits _{i=0}^dH_i(2H_i-1)$$\end{document}.
引用
收藏
页码:1617 / 1646
页数:29
相关论文
共 50 条
  • [41] Analytical Solutions, Moments, and Their Asymptotic Behaviors for the Time-Space Fractional Cable Equation
    李灿
    邓伟华
    Communications in Theoretical Physics, 2014, 62 (07) : 54 - 60
  • [42] Asymptotic behavior of a viscoelastic wave equation with a delay in internal fractional feedback
    Aounallah, Radhouane
    Choucha, Adbelbaki
    Boulaaras, Salah
    Zarai, Abderrahmane
    ARCHIVES OF CONTROL SCIENCES, 2024, 34 (02): : 379 - 413
  • [43] Asymptotic behavior of ground states for a fractional Choquard equation with critical growth
    Yang, Xianyong
    Miao, Qing
    AIMS MATHEMATICS, 2021, 6 (04): : 3838 - 3856
  • [44] Solving a class of high-order fractional stochastic heat equations with fractional noise
    Zhang, Xiaodong
    Liu, Junfeng
    AIMS MATHEMATICS, 2022, 7 (06): : 10625 - 10650
  • [45] Moderate deviations for a fractional stochastic heat equation with spatially correlated noise
    Li, Yumeng
    Wang, Ran
    Yao, Nian
    Zhang, Shuguang
    STOCHASTICS AND DYNAMICS, 2017, 17 (04)
  • [46] LOCAL Lp-SOLUTION FOR SEMILINEAR HEAT EQUATION WITH FRACTIONAL NOISE
    Clarke, Jorge
    Olivera, Christian
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 305 - 312
  • [47] Harnack inequality and derivative formula for stochastic heat equation with fractional noise
    Yan, Litan
    Yin, Xiuwei
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [48] Solving a stochastic heat equation driven by a bi-fractional noise
    Xianye Yu
    Xichao Sun
    Litan Yan
    Boundary Value Problems, 2016
  • [49] Solving a stochastic heat equation driven by a bi-fractional noise
    Yu, Xianye
    Sun, Xichao
    Yan, Litan
    BOUNDARY VALUE PROBLEMS, 2016,
  • [50] The Stochastic Heat Equation with Fractional-Colored Noise: Existence of the Solution
    Balan, Raluca M.
    Tudor, Ciprian A.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2008, 4 : 57 - 87