Asymptotic Behavior for High Moments of the Fractional Heat Equation with Fractional Noise

被引:0
|
作者
Litan Yan
Xianye Yu
机构
[1] Donghua University,Department of Mathematics, College of Science
[2] Zhejiang Gongshang University,Department of Statistics and Mathematics
来源
关键词
Fractional heat equation; Fractional Brownian sheet; Asymptotic behavior; 60H15; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the large time behavior of the solution to the fractional heat equation ∂u∂t(t,x)=-(-Δ)β/2u(t,x)+u(t,x)∂d+1W∂t∂x1⋯∂xd,t>0,x∈Rd,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial u}{\partial t}(t,x)=-(-\Delta )^{\beta /2}u(t,x)+u(t,x)\frac{\partial ^{d+1} W}{\partial t\partial x_1\cdots \partial x_d},\quad t>0,\quad x\in \mathbb {R}^d, \end{aligned}$$\end{document}where β∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in (0,2)$$\end{document} and the noise W(t, x) is a fractional Brownian sheet with indexes H0,H1,…,Hd∈(12,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0, H_1,\ldots ,H_d\in (\frac{1}{2},1)$$\end{document}. By using large deviation techniques and variational method, we find a constant M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_1$$\end{document} such that for any integer p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document} and α0β+α<β,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _0\beta +\alpha <\beta ,$$\end{document}limt→∞t-2β-βα0-αβ-αlogEu(t,x)p=p2β-αβ-ααH2ββ-αM1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{t\rightarrow \infty }t^{-\frac{2\beta -\beta \alpha _0-\alpha }{\beta -\alpha }} \log Eu(t,x)^p=p^{\frac{2\beta -\alpha }{\beta -\alpha }}\left( \frac{\alpha _H}{2} \right) ^{\frac{\beta }{\beta -\alpha }}M_1, \end{aligned}$$\end{document}where α0=2-2H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _0=2-2H_0$$\end{document}, α=∑j=1d(2-2Hj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\sum \nolimits _{j=1}^d(2-2H_j)$$\end{document} and αH=∏i=0dHi(2Hi-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _H=\prod \nolimits _{i=0}^dH_i(2H_i-1)$$\end{document}.
引用
收藏
页码:1617 / 1646
页数:29
相关论文
共 50 条
  • [21] On Fractional Heat Equation
    Anatoly N. Kochubei
    Yuri Kondratiev
    José Luís da Silva
    Fractional Calculus and Applied Analysis, 2021, 24 : 73 - 87
  • [22] ON FRACTIONAL HEAT EQUATION
    Kochubei, Anatoly N.
    Kondratiev, Yuri
    da Silva, Jose Luis
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (01) : 73 - 87
  • [23] Moments, intermittency and growth indices for the nonlinear fractional stochastic heat equation
    Chen L.
    Dalang R.C.
    Stochastic Partial Differential Equations: Analysis and Computations, 2015, 3 (3) : 360 - 397
  • [24] Asymptotic behavior of fractional stochastic heat equations in materials with memory
    Li, Linyan
    Shu, Ji
    Bai, Qianqian
    Li, Hui
    APPLICABLE ANALYSIS, 2021, 100 (01) : 145 - 166
  • [25] Large Deviation Principle for a Space-Time Fractional Stochastic Heat Equation with Fractional Noise
    Litan Yan
    Xiuwei Yin
    Fractional Calculus and Applied Analysis, 2018, 21 : 462 - 485
  • [26] STOCHASTIC HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND FRACTIONAL NOISE:EXISTENCE OF THE SOLUTION AND ANALYSIS OF ITS DENSITY
    刘俊峰
    Ciprian A.TUDOR
    Acta Mathematica Scientia, 2017, (06) : 1545 - 1566
  • [27] LARGE DEVIATION PRINCIPLE FOR A SPACE-TIME FRACTIONAL STOCHASTIC HEAT EQUATION WITH FRACTIONAL NOISE
    Yan, Litan
    Yin, Xiuwei
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (02) : 462 - 485
  • [28] STOCHASTIC HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND FRACTIONAL NOISE:EXISTENCE OF THE SOLUTION AND ANALYSIS OF ITS DENSITY
    刘俊峰
    Ciprian ATUDOR
    Acta Mathematica Scientia(English Series), 2017, 37 (06) : 1545 - 1566
  • [29] On the law of the solution to a stochastic heat equation with fractional noise in time
    Bourguin, Solesne
    Tudor, Ciprian A.
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2015, 23 (03) : 179 - 186
  • [30] Stochastic heat equation driven by fractional noise and local time
    Yaozhong Hu
    David Nualart
    Probability Theory and Related Fields, 2009, 143 : 285 - 328