Nonlinear eigenvalue problems in smectics

被引:0
|
作者
V. I. Marchenko
E. R. Podolyak
机构
[1] Russian Academy of Sciences,Kapitza Institute for Physical Problems
[2] Moscow Institute of Physics and Technology,undefined
关键词
Dipole Moment; Angular Dependence; Integration Constant; Asymptotic Form; Linear Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
The asymptotic forms of strains in a smectic around the linear distributions of multipole force are determined. The law of a decrease in strains is specified by the indices, which are eigenvalues of nonlinear equations describing the angular dependence of the strains.
引用
收藏
页码:1050 / 1053
页数:3
相关论文
共 50 条
  • [41] RANDOMIZED SKETCHING OF NONLINEAR EIGENVALUE PROBLEMS
    Guttel, Stefan
    Kressner, Daniel
    Vandereycken, Bart
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (05): : A3022 - A3043
  • [42] Perturbation effects in nonlinear eigenvalue problems
    Radulescu, Vicentiu
    Repovs, Dusan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) : 3030 - 3038
  • [43] Nodal solutions for nonlinear eigenvalue problems
    Ma, RY
    Thompson, B
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (05) : 707 - 718
  • [44] Nonlinear eigenvalue problems for quasilinear systems
    Henderson, TL
    Wang, HY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) : 1941 - 1949
  • [45] NLEVP: A Collection of Nonlinear Eigenvalue Problems
    Betcke, Timo
    Higham, Nicholas J.
    Mehrmann, Volker
    Schroeder, Christian
    Tisseur, Francoise
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02):
  • [46] Chebyshev interpolation for nonlinear eigenvalue problems
    Cedric Effenberger
    Daniel Kressner
    BIT Numerical Mathematics, 2012, 52 : 933 - 951
  • [47] ASYMPTOTIC LINEARITY AND NONLINEAR EIGENVALUE PROBLEMS
    TOLAND, JF
    QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (94): : 241 - 250
  • [48] A VARIATIONAL APPROACH TO NONLINEAR EIGENVALUE PROBLEMS
    HESS, P
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (06): : 958 - &
  • [49] Nonlinear nonhomogeneous Neumann eigenvalue problems
    Candito, Pasquale
    Livrea, Roberto
    Papageorgiou, Nikolaos S.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (46) : 1 - 24
  • [50] Existence theory for nonlinear eigenvalue problems
    Rodriguez, Jesus F.
    APPLICABLE ANALYSIS, 2008, 87 (03) : 293 - 301