Rational approximation is a powerful tool to obtain accurate surrogates for nonlinear functions that are easy to evaluate and linearize. The interpolatory adaptive Antoulas-Anderson (AAA) method is one approach to construct such approximants numerically. For large-scale vectorand matrix-valued functions, however, the direct application of the set-valued variant of AAA becomes inefficient. We propose and analyze a new sketching approach for such functions called sketchAAA that, with high probability, leads to much better approximants than previously suggested approaches while retaining efficiency. The sketching approach works in a black-box fashion where only evaluations of the nonlinear function at sampling points are needed. Numerical tests with nonlinear eigenvalue problems illustrate the efficacy of our approach, with speedups over 200 for sampling large-scale black-box functions without sacrificing accuracy.
机构:
Washington Univ, Dept Phys, St Louis, MO 63130 USA
City Univ London, Dept Math Sci, London EC1V 0HB, EnglandWashington Univ, Dept Phys, St Louis, MO 63130 USA
Bender, Carl M.
论文数: 引用数:
h-index:
机构:
Fring, Andreas
Komijani, Javad
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Phys, St Louis, MO 63130 USAWashington Univ, Dept Phys, St Louis, MO 63130 USA