RANDOMIZED SKETCHING OF NONLINEAR EIGENVALUE PROBLEMS

被引:0
|
作者
Guttel, Stefan [1 ]
Kressner, Daniel [2 ]
Vandereycken, Bart [3 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, England
[2] EPF Lausanne, SB MATHICSE ANCHP, CH-1015 Lausanne, Switzerland
[3] Univ Geneva, Sect Math, CH-1211 Geneva 4, Switzerland
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 05期
基金
瑞士国家科学基金会;
关键词
rational approximation; randomization; sketching; nonlinear eigenvalue problem; RATIONAL APPROXIMATION; ALGORITHM;
D O I
10.1137/22M153656X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rational approximation is a powerful tool to obtain accurate surrogates for nonlinear functions that are easy to evaluate and linearize. The interpolatory adaptive Antoulas-Anderson (AAA) method is one approach to construct such approximants numerically. For large-scale vectorand matrix-valued functions, however, the direct application of the set-valued variant of AAA becomes inefficient. We propose and analyze a new sketching approach for such functions called sketchAAA that, with high probability, leads to much better approximants than previously suggested approaches while retaining efficiency. The sketching approach works in a black-box fashion where only evaluations of the nonlinear function at sampling points are needed. Numerical tests with nonlinear eigenvalue problems illustrate the efficacy of our approach, with speedups over 200 for sampling large-scale black-box functions without sacrificing accuracy.
引用
收藏
页码:A3022 / A3043
页数:22
相关论文
共 50 条
  • [41] Nonlinear eigenvalue problems and contour integrals
    Van Barel, Marc
    Kravanja, Peter
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 526 - 540
  • [42] Perturbation effects in nonlinear eigenvalue problems
    Radulescu, Vicentiu
    Repovs, Dusan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) : 3030 - 3038
  • [43] Nodal solutions for nonlinear eigenvalue problems
    Ma, RY
    Thompson, B
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (05) : 707 - 718
  • [44] Nonlinear eigenvalue problems for quasilinear systems
    Henderson, TL
    Wang, HY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) : 1941 - 1949
  • [45] NLEVP: A Collection of Nonlinear Eigenvalue Problems
    Betcke, Timo
    Higham, Nicholas J.
    Mehrmann, Volker
    Schroeder, Christian
    Tisseur, Francoise
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02):
  • [46] ASYMPTOTIC LINEARITY AND NONLINEAR EIGENVALUE PROBLEMS
    TOLAND, JF
    QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (94): : 241 - 250
  • [47] Chebyshev interpolation for nonlinear eigenvalue problems
    Cedric Effenberger
    Daniel Kressner
    BIT Numerical Mathematics, 2012, 52 : 933 - 951
  • [48] A VARIATIONAL APPROACH TO NONLINEAR EIGENVALUE PROBLEMS
    HESS, P
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (06): : 958 - &
  • [49] Nonlinear nonhomogeneous Neumann eigenvalue problems
    Candito, Pasquale
    Livrea, Roberto
    Papageorgiou, Nikolaos S.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (46) : 1 - 24
  • [50] Existence theory for nonlinear eigenvalue problems
    Rodriguez, Jesus F.
    APPLICABLE ANALYSIS, 2008, 87 (03) : 293 - 301