Entropy Minimization for Many-Body Quantum Systems

被引:0
|
作者
Romain Duboscq
Olivier Pinaud
机构
[1] Institut de Mathématiques de Toulouse,Department of Mathematics
[2] UMR5219,undefined
[3] Université de Toulouse; CNRS,undefined
[4] INSA,undefined
[5] Colorado State University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The problem considered here is motivated by a work by Nachtergaele and Yau where the Euler equations of fluid dynamics are derived from many-body quantum mechanics, see (Commun Math Phys 243(3):485–540, 2003). A crucial concept in their work is that of local quantum Gibbs states, which are quantum statistical equilibria with prescribed particle, current, and energy densities at each point of space (here Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}, d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 1$$\end{document}). They assume that such local Gibbs states exist, and show that if the quantum system is initially in a local Gibbs state, then the system stays, in an appropriate asymptotic limit, in a Gibbs state with particle, current, and energy densities now solutions to the Euler equations. Our main contribution in this work is to prove that such local quantum Gibbs states can be constructed from prescribed densities under mild hypotheses, in both the fermionic and bosonic cases. The problem consists in minimizing the von Neumann entropy in the quantum grand canonical picture under constraints of local particle, current, and energy densities. The main mathematical difficulty is the lack of compactness of the minimizing sequences to pass to the limit in the constraints. The issue is solved by defining auxiliary constrained optimization problems, and by using some monotonicity properties of equilibrium entropies.
引用
收藏
相关论文
共 50 条
  • [41] Approach to typicality in many-body quantum systems
    Dubey, Shawn
    Silvestri, Luciano
    Finn, Justin
    Vinjanampathy, Sai
    Jacobs, Kurt
    PHYSICAL REVIEW E, 2012, 85 (01):
  • [42] Equilibration time in many-body quantum systems
    Lezama, Talia L. M.
    Jonathan Torres-Herrera, E.
    Perez-Bernal, Francisco
    Bar Lev, Yevgeny
    Santos, Lea F.
    PHYSICAL REVIEW B, 2021, 104 (08)
  • [43] Parameter symmetries of quantum many-body systems
    Cejnar, P
    Geyer, HB
    PHYSICAL REVIEW C, 2001, 64 (03): : 343071 - 343077
  • [44] EXACTLY SOLVABLE QUANTUM MANY-BODY SYSTEMS
    CARMI, G
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (01): : 22 - +
  • [45] Simulating quantum dissipation in many-body systems
    Capriotti, L
    Cuccoli, A
    Fubini, A
    Tognetti, V
    Vaia, R
    EUROPHYSICS LETTERS, 2002, 58 (02): : 155 - 161
  • [46] REDUCED DENSITY MATRIX AND ENTANGLEMENT ENTROPY OF PERMUTATIONALLY INVARIANT QUANTUM MANY-BODY SYSTEMS
    Popkov, Vladislav
    Salerno, Mario
    KOREPIN FESTSCHRIFT: FROM STATISTICAL MECHANICS TO QUANTUM INFORMATION SCIENCE: A COLLECTION OF ARTICLES WRITTEN IN HONOR OF THE 60TH BIRTHDAY OF VLADIMIR KOREPIN, 2013, : 119 - 140
  • [47] Burnett coefficients in quantum many-body systems
    Steinigeweg, R.
    Prosen, T.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [48] Optimal Correlations in Many-Body Quantum Systems
    Amico, L.
    Rossini, D.
    Hamma, A.
    Korepin, V. E.
    PHYSICAL REVIEW LETTERS, 2012, 108 (24)
  • [49] Entanglement dynamics in quantum many-body systems
    Ho, Wen Wei
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2017, 95 (09)
  • [50] Aspects of Entanglement in Quantum Many-Body Systems
    Clark, John W.
    Habibian, Hessam
    Mandilara, Aikaterini D.
    Ristig, Manfred L.
    FOUNDATIONS OF PHYSICS, 2010, 40 (9-10) : 1200 - 1220